Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track
Xudong Pan, Shengyao Zhang, Mi Zhang, Yifan Yan, Min Yang
In this paper, we present a capacity-aware neuron steganography scheme (i.e., Cans) to covertly transmit multiple private machine learning (ML) datasets via a scheduled-to-publish deep neural network (DNN) as the carrier model. Unlike existing steganography schemes which treat the DNN parameters as bit strings, \textit{Cans} for the first time exploits the learning capacity of the carrier model via a novel parameter sharing mechanism. Extensive evaluation shows, Cans is the first working scheme which can covertly transmit over $10000$ real-world data samples within a carrier model which has $220\times$ less parameters than the total size of the stolen data, and simultaneously transmit multiple heterogeneous datasets within a single carrier model, under a trivial distortion rate ($<10^{-5}$) and with almost no utility loss on the carrier model ($<1\%$). Besides, Cans implements by-design redundancy to be resilient against common post-processing techniques on the carrier model before the publishing.