Supplementary Materials for House of Cans: Covert Transmission of Internal Datasets via Capacity-Aware Neuron Steganography

Xudong Pan
Fudan University
xdpan18@fudan.edu.cn

Shengyao Zhang
Fudan University
shengyaozhang210m.fudan.edu.cn

Mi Zhang
Fudan University
mi_zhang@fudan.edu.cn

Yifan Yan
Fudan University
yanyf20@fudan.edu.cn

Min Yang
Fudan University
m_yang@fudan.edu.cn

A Omitted Algorithmic Details

We provide the detailed algorithms for Fill, Propagate, Decode in Algorithm A.1 & A.3 respectively.

Algorithm A.1 The Fill(P, f, v) Primitive

Input: $P = P_w \cup P_b \cup P_s$ (an initialized weight pool), f (a DNN model), v (an integer secret).

Output: $P(\cdot, v)$ (a hash map).

1. $v_w, v_b, v_s \leftarrow v \mod |P_w|, v \mod |P_b|, v \mod |P_s|$ \hspace{1cm} // Derivation of initial random shift on each parameter group.
2. Generate a random permutation $\pi_w (\pi_b, \pi_s)$ of integers from 0 to $|P_w|$ ($|P_b|, |P_s|$) with seeds $v_w (v_b, v_s)$.
3. $P(\cdot, v) \leftarrow \{\}$ \hspace{1cm} // Initialize a hash map to store the mapping relation.
4. for each scalar parameter w in f do
5. if w belongs to a {weight, scale, bias} parameter then
6. switch (type(w)) do
7. case weight:
8. $w_P \leftarrow (\pi_w \circ P_w)[v_w], v_w \leftarrow (v_w + 1) \mod |P_w|$
9. case bias:
10. $w_P \leftarrow (\pi_b \circ P_b)[v_b], v_b \leftarrow (v_b + 1) \mod |P_b|$
11. case scale:
12. $w_P \leftarrow (\pi_s \circ P_s)[v_s], v_s \leftarrow (v_s + 1) \mod |P_s|$
13. end switch
14. $w.data \leftarrow w_P.data$
15. $P(\cdot, v).Add(w \rightarrow w_P)$
16. else
17. CONTINUE
18. end if
19. end for
20. return $P(\cdot, v)$

B Background: Data Security Models in AI Industry

As an essential background for discussing insider attacks, we provide below a field study on typical data security mechanisms in AI corporations. With Data Leakage Prevention Systems (DLPS)
Algorithm A.2 The t-th iteration during the joint training process on the weight pool

Input: P_t (the current weight pool), $\{ (f_k, D_k, \ell_k, \text{Opt}_k) \}_{k=0}^N$ (the secret and open tasks). \triangleright For simplicity, the index 0 denotes the open task on the carrier model.

Output: P_{t+1} (the updated weight pool)

1. for each parameter w_p in P_t do
2. $w_p, \text{buffer} \leftarrow \{ \}$
3. end for
4. parallel for $k = 0, 1, \ldots, N$ do
5. $\mathcal{P}(\cdot, v_k) \leftarrow \text{Fill}(P_t, f_k, v_k)$
6. Sample a training batch B from \tilde{D}_k.
7. $L_k \leftarrow \frac{1}{|B|} \sum_{(x, y) \in B} \ell_k(f_k(x; \mathcal{P}(\theta_k, v_k)), y)$. \triangleright Approximate the loss L_k on a randomly sampled mini-batch.
8. $L_k, \text{Backward}()$
9. $\Delta \theta_k \leftarrow \text{Opt}_{\theta_k}.\text{Step}()$
10. for each scalar parameter w in θ_k do
11. if w belongs to a \{weight, scale, bias\} parameter then
12. $\mathcal{P}(w, v_k).\text{buffer}.\text{Append}() \triangleright$ Propagate the update to the corresponding weight pool parameter.
13. end if
14. end for
15. end parallel
16. for each parameter w_p in P_t do
17. $w_p \leftarrow w_p + \text{Average}(w_p, \text{buffer})$
18. end for
19. return P_{t+1}.

Algorithm A.3 The Decode(C, v_s) Primitive

Input: C (the carrier model), v_s (the integer secret of the carrier model), N_w, N_b, N_s (the length of P_w, P_b, P_s).

Output: $P = P_w \cup P_b \cup P_s$ (the decoded weight pool).

1. $P_w \leftarrow \text{list}(), P_b \leftarrow \text{list}(), P_s \leftarrow \text{list}()$
2. for each scalar parameter w in C do
3. if w belongs to a \{weight, scale, bias\} parameter then
4. switch (type(w)) do
5. case weight:
6. $P_w.\text{Append}(w.\text{data})$
7. case bias:
8. $P_b.\text{Append}(w.\text{data})$
9. case scale:
10. $P_s.\text{Append}(w.\text{data})$
11. end switch
12. else
13. CONTINUE
14. end if
15. end for
16. $v_{w}, v_b, v_s \leftarrow v_s \mod N_w, v_b \mod N_b, v_s \mod N_s$
17. Generate a random permutation π_w (π_b, π_s) of integers from 0 to N_w (N_b, N_s) with seeds v_{w}, v_b, v_s.
18. $P_w, P_b, P_s \leftarrow \text{Fusion}(P_w, P_b, P_s) \quad \triangleright$ Recover the parameter by selecting the non-zero value from each weight pool copy, if needed.
19. Right-shift each parameter group by v_{w}, v_b, v_s.
20. $P_w, P_b, P_s \leftarrow \pi_w^{-1} \circ P_w, \pi_b^{-1} \circ P_b, \pi_s^{-1} \circ P_s$
21. return $P = P_w \cup P_b \cup P_s$
blocking data transfer to unauthorized endpoint devices (e.g., Wi-Fi, Bluetooth, USB) or to the outside network, various access control policies are implemented by AI corporations to manage their owned internal datasets. In the following, we discuss two typical modes named as the Willing-to-Share mode and the Application-then-Authorization mode informed by the industry partners.

- For start-up corporations which focus on one killer application (e.g., object detection), they prefer to organize the datasets in a more shareable mode. According to our field study, a majority of the groups organize all the datasets (either from public or private sources) in their local distributed file system, which enables fast access to specific datasets according to one’s requirement and facilitates swift development of novel DL techniques.

- More established AI corporations prefer to implement a more conservative way of managing ML datasets. According to Google’s common security whitepaper, each employer should first apply for the authorization before accessing certain data resources, including the access to private datasets. However, considering the ever-evolving paradigms in deep learning, employees with ulterior motives may fabricate reasons such as the requirements of data augmentation or the purpose of multimodal learning to apply for relevant and irrelevant private datasets, which is common in social engineering. Under the umbrella of DLPS, corporations may be less precautious about the unnecessary access to certain private datasets, as DLPS ought to forbid any attempts of transferring the private datasets away from the local network.

However, neither of the above notes can prevent an insider to access the private dataset, especially when he/she is assigned with workloads related to the private dataset or applies to access the private dataset for, e.g., multimodal learning (i.e., a learning paradigm which leverages multiple datasets from different domains to enhance the model training).

C Omitted Experimental Details

C.1 Detailed Architecture of Secret Models

We provided the detailed architecture of secret models on CIFAR-10, FaceScrub, and SpeechCommand in Table C.1, C.2, and C.3 respectively.

Table C.1: The detailed architecture of secret generator on CIFAR-10, which is described by convention of PyTorch.

<table>
<thead>
<tr>
<th>Generator</th>
</tr>
</thead>
<tbody>
<tr>
<td>nn.ConvTranspose2d(100, 512, 4, 1, 0, bias=False)</td>
</tr>
<tr>
<td>nn.BatchNorm2d(512)</td>
</tr>
<tr>
<td>nn.ReLU()</td>
</tr>
<tr>
<td>nn.ConvTranspose2d(512, 256, 4, 2, 1, bias=False)</td>
</tr>
<tr>
<td>nn.BatchNorm2d(256)</td>
</tr>
<tr>
<td>nn.ReLU()</td>
</tr>
<tr>
<td>nn.ConvTranspose2d(256, 128, 4, 2, 1, bias=False)</td>
</tr>
<tr>
<td>nn.BatchNorm2d(32)</td>
</tr>
<tr>
<td>nn.ReLU()</td>
</tr>
<tr>
<td>nn.ConvTranspose2d(128, 64, 4, 2, 1, bias=False)</td>
</tr>
<tr>
<td>nn.BatchNorm2d(64)</td>
</tr>
<tr>
<td>nn.ReLU()</td>
</tr>
<tr>
<td>nn.ConvTranspose2d(64, 3, 1, 1, 0, bias=False)</td>
</tr>
<tr>
<td>nn.Tanh()</td>
</tr>
</tbody>
</table>

C.2 Other Experimental Setups

For other common hyper-parameter settings in Algorithm A.2, we train our carrier model for 200 epochs using Stochastic Gradient Descent (SGD) with an initial learning rate of 0.1, a weight decay of 5×10^{-4}, and a momentum of 0.9. We trained our secret models using Adam optimizer with an initial learning rate of 2×10^{-4} on CIFAR-10 and SpeechCommand (1×10^{-3} on FaceScrub), and running average coefficients of 0.5, 0.999. For faster convergence, we dynamically adjust the
learning using a cosine annealing schedule with the number of epochs T_{max} of 200. We set the batch size of CIFAR-10, FaceScrub, and SpeechCommand as 128, 64, and 64 respectively.

All the experiments are implemented with Torch [5], which is an open-source software framework for numeric computation and deep learning. All our experiments are conducted on a Linux server running Ubuntu 16.04, one AMD Ryzen Threadripper 2990WX 32-core processor and 2 NVIDIA GTX RTX2080 GPUs.

References

