Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track
Ho Huu Nghia Nguyen, Tan Nguyen, Huyen Vo, Stanley Osher, Thieu Vo
We propose the Nesterov neural ordinary differential equations (NesterovNODEs), whose layers solve the second-order ordinary differential equations (ODEs) limit of Nesterov's accelerated gradient (NAG) method, and a generalization called GNesterovNODEs. Taking the advantage of the convergence rate $\mathcal{O}(1/k^{2})$ of the NAG scheme, GNesterovNODEs speed up training and inference by reducing the number of function evaluations (NFEs) needed to solve the ODEs. We also prove that the adjoint state of a GNesterovNODEs also satisfies a GNesterovNODEs, thus accelerating both forward and backward ODE solvers and allowing the model to be scaled up for large-scale tasks. We empirically corroborate the advantage of GNesterovNODEs on a wide range of practical applications, including point cloud separation, image classification, and sequence modeling. Compared to NODEs, GNesterovNODEs require a significantly smaller number of NFEs while achieving better accuracy across our experiments.