
Improving Neural Ordinary Differential Equations
with Nesterov’s Accelerated Gradient Method

Nghia H. Nguyen⇤

FPT Software AI Center
Ha Noi, Vietnam

nghianhh1@fsoft.com.vn

Tan M. Nguyen⇤

Department of Mathematics
University of California, Los Angeles

tanmnguyen89@ucla.edu

Huyen K. Vo
FPT Software AI Center

Ha Noi, Vietnam
huyenvtk1@fsoft.com.vn

Stanley J. Osher
Department of Mathematics

University of California, Los Angeles
sjo@math.ucla.edu

Thieu N. Vo
Faculty of Mathematics and Statistics

Ton Duc Thang University, Ho Chi Minh City, Vietnam
vongocthieu@tdtu.edu.vn

Abstract

We propose the Nesterov neural ordinary differential equations (NesterovNODEs),
whose layers solve the second-order ordinary differential equations (ODEs) limit
of Nesterov’s accelerated gradient (NAG) method, and a generalization called
GNesterovNODEs. Taking the advantage of the convergence rate O(1/k2) of the
NAG scheme, GNesterovNODEs speed up training and inference by reducing the
number of function evaluations (NFEs) needed to solve the ODEs. We also prove
that the adjoint state of a GNesterovNODEs also satisfies a GNesterovNODEs,
thus accelerating both forward and backward ODE solvers and allowing the model
to be scaled up for large-scale tasks. We empirically corroborate the advantage of
GNesterovNODEs on a wide range of practical applications, including point cloud
separation, image classification, and sequence modeling. Compared to NODEs,
GNesterovNODEs require a significantly smaller number of NFEs while achieving
better accuracy across our experiments.

1 Introduction
Dynamical systems have been recently integrated into deep neural networks for modeling high-
dimensional data. The advantage of this approach is that well-developed mathematical modeling
techniques from dynamical systems can be employed to improve neural networks. Along this research
direction, the correspondence between residual networks, a popular class of neural networks with
skip connections, and the numerical solution of ordinary differential equations (ODEs) have been
vastly studied in [15, 57, 47, 4]. The resulting Neural ODEs (NODEs) model when taking the the
discretization step to zero have shown great promises in a wide range of applications including
scientific discovery [24, 62], irregular time series modeling [46, 5], mean-field games [48], and
generative modeling [13, 61]. NODEs model the dynamics of hidden state h(t) 2 RN in a neural

⇤ Co-first authors. Please correspond to: nghianhh1@fsoft.com.vn or tanmnguyen89@ucla.edu or vongoc-
thieu@tdtu.edu.vn

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

network by an ODE

dh(t)

dt
= f(h(t), t, ✓), h(0) = h(t0), (1)

where function f captures the dynamics and is chosen to be a neural network with parameters ✓ that
are learned from the data. Starting from the input h(t0) at the initial time t0, NODEs compute the
output h(T) at time T by solving the Initial Value Problem in Eq. (1) for some time T � t0. NODEs
are trained by optimizing the loss L(h(T)) between the prediction h(T) and the ground truth where
the parameters ✓ are updated using the following gradient [42]

dL(h(T))

d✓
=

Z T

t0

a(t)
@f(h(t), t, ✓)

@✓
dt, (2)

where a(t) := @L/@h(t) is the continuous adjoint state, which satisfies the continuous adjoint
equation

da(t)

dt
= �a(t)

@f(h(t), t, ✓)

@h
. (3)

NODEs solve both the ODE Eq. (1) in its forward pass and the ODEs (2) and (3) in its backward
pass using black-box numerical ODE solvers. The literature refers to this approach as either the
continuous adjoint method or optimise-then-discretise [21]. The number of function evaluations
(NFEs) that these solvers need in a single forward and backward pass is among the main factors that
decide the computational efficiency of the model, i.e. how fast the model is. Unfortunately, in many
applications, NODEs require high NFEs in both training and inference, especially when the error
tolerances of the solvers are set to small values for obtaining high accuracy. Furthermore, the NFEs
increase rapidly when training progresses. High NFEs deteriorate the efficiency of NODEs, reduce
the accuracy of the trained model, and results in instability during training, making it difficult to scale
up the models to large-scale tasks [14, 8, 30, 37, 11].

1.1 Contribution
We propose the Nesterov Neural ODEs (NesterovNODEs) that leverage the continuous limit of the
Nesterov’s accelerated gradient (NAG) descent [52] and the convergence rate O(1/k2) of the NAG
scheme to enhance NODE training and inference. Our contributions are four-fold:

1. We formulate the NesterovNODE that solves Nesterov ODEs, i.e. second-order ODEs with
a time-dependent damping term, instead of first-order ODEs (1). To improve computational
efficiency of the model, we convert these second-order ODEs into equivalent systems of
first-order differential-algebraic equations that are solved in both forward and backward
propagations of the NesterovNODE.

2. To eliminate the potential blow-up problem in training NesterovNODEs, we further develop
the Generalized NesterovNODEs (GNesterovNODEs) by introducing skip connections [16]
and gating mechanisms [18] into NesterovNODEs. In general, GNesterovNODEs form a
wide class of neural differential equations which are represented by differential-algebraic
systems and contain NesterovNODEs as a subclass.

3. We prove that the continuous adjoint equation used to compute the gradients for updating
the parameters ✓ in a GNesterovNODE also follows a generalized Nesterov ODE. Thus, the
NFEs in both forward and backward passes of GNesterovNODEs are significantly reduced,
especially when the solvers are used with small error tolerances.

4. We prove that the spectrum of the GNesterovNODE is well-structured. This property of
GNesterovNODEs helps alleviate the vanishing gradient issue during training and allows
the model to capture long-term dependencies in the data.

We empirically demonstrate the advantages of the NesterovNODEs/GNesterovNODEs over the
baseline NODE and the state-of-the-art neural ODE models including the Heavy Ball NODEs
(HBNODEs), which solve the continuous limit of the heavy ball momentum accelerated gradient
descent [60] on a wide range of applications including point cloud separation, image classification,
and kinetic simulation. In all experiments, our proposed models achieve better accuracy and smaller
NFEs than the baselines.

2

1.2 Organization
We structure this paper as follows: In Section 2, we review HBNODEs and NesterovODEs. In Section
3, we present the algorithm and analysis of the NesterovNODEs and GNesterovNODEs. We study
the spectrum structure of the adjoint equations of NesterovNODEs/GNesterovNODEs to show that
NesterovNODEs/GNesterovNODEs can learn long-term dependencies effectively in Section 4. In
Section 5 and 6, we empirically validate the advantages of NesterovNODEs/GNesterovNODEs and
analyze our models with ablation studies. We discuss related works in Section 7. The paper ends
with concluding remarks. Proofs and additional experimental details are provided in the Appendix.

2 An Integration of Nesterov ODEs into NODEs
We first establish a connection between NODEs and gradient descent (GD), then review the Heavy
Ball Neural ODEs (HBNODEs), and motivate the integration of Nesterov ODEs into NODEs.

ODE limit of gradient descent and connections to NODEs Gradient descent (GD) has been among
the methods of choice in optimization and machine learning for training complex systems. Starting
from initial point x0 2 Rd, GD iterates as xk = xk�1�srF (xk) with s > 0 being the step size in or-
der to find a minimum of the function F (x). Let s ! 0, we obtain the following ODE limit of the GD

GD HB NAG

Figure 1: Comparing the convergence of
GD, HB and NAG for solving the optimiza-
tion problem minx F (x) = 1

2 x>Lx�x>b

where L 2 Rd⇥d is the Laplacian of a cycle
graph and b is a d-dimensional vector whose
first entry is 1 and all the other entries are 0.

dx

dt
= �rF (xt). (4)

Comparing Eq. (1) and (4), we observe that a NODE
solves the ODE limit of the GD where the gradi-
ent �rF (xt) is parameterized by a neural network
f(x(t), t, ✓).
Heavy ball neural ordinary differential equations
HBNODEs are proposed in [60]. This model takes ad-
vantage of the acceleration of heavy ball (HB) momen-
tum [41] to reduce the NFEs needed for solving the ODEs
and speed up NODEs. In particular, HBNODEs replace
the first-order ODE limit of GD by the following second-
order ODE limit of heavy ball momentum method:

d
2x(t)

dt2
+ �

dx(t)

dt
= �rF (x(t)). (5)

Similar to NODEs, [60] parameterize �rF (x(t)) by a neural network f(x(t), t, ✓) and formulate
HBNODEs as follows

d
2x(t)

dt2
+ �

dx(t)

dt
= f(x(t), t, ✓), (6)

where � > 0 is the damping parameter, which can be a hyperparameter or a learnable parameter.
Nesterov’s accelerated gradient (NAG) momentum Even though HB improves the convergence
and accelerates GD, both GD and HB share the same convergence rate of O(1/k) for convex
smooth optimization. A breakthrough due to Nesterov [33] replaces the constant momentum �

with (k � 1)/(k + 2), a.k.a. NAG momentum, improves the convergence rate to O(1/k2), which
is proved to be optimal for convex and smooth objective functions [33, 52]. We demonstrate the
faster convergence of NAG in comparison with GD and HB on a quadratic optimization problem
in Figure 1. The much faster convergence rate of NAG than that of GD and HB motivates us to
incorporate the second-order ODE limit of NAG into a NODE and propose the NesterovNODE.
Nesterov acceleration gradient method [33] takes the following form: given initial points x0 2 RN

and y0 = x0, the sequence {(xk, yk)}k is defined inductively as:8
<

:

xk = yk�1 � srF (yk�1),

yk = xk +
k � 1

k + 2
(xk � xk�1).

(7)

The continuous limit of the Nesterov scheme is obtained by setting xk = h(k
p
s) = h(t) with

t = k
p
s and some smooth function h from R to RN . According to [52], the function h satisfies the

Nesterov ODE
h00(t) +

3

t
h0(t) +rF (h(t)) = 0, (8)

with the initial conditions h(0) = h0, h0(0) = 0.

3

Remark 1 (Nesterov factor). The constant 3 in the coefficient of h0(t) in Eq. (8) is originally from the
approximation (k � 1)/(k + 2) = 1� 3/k +O(1/k2). This constant will be replaced by a constant
r if the factor (k � 1)/(k + 2) in Eq. (7) is replaced by (k � 1)/(k + r � 1). It is proved in [52]
that the Nesterov ODE still holds the quadratic convergence rate when 3 is replaced by any number
r > 3.
Remark 2 (Numerical stability). If the Euler method is used, then to keep the numerical solution
close to the exact solution, the step size chosen in the Euler method must be small enough. However,
the smaller the step size, the more expensive the computation. The maximum stable step size, which
is the maximum value for which the step size can be chosen so that the numerical solution remains
close to the exact solution, reflects the numerical stability of the ODEs. It is proved in [52] that the
maximum stable step size of the Nesterov ODE is much larger than that of the ODE (4), thus showing
the numerical stability advantage of the Nesterov ODE.

3 Generalize Nesterov ODEs to Differential-Algebraic Systems
One can parameterize rF (h(t)) in Eq. (8) by a neural network f(h(t), t, ✓) with learnable parameters
✓ in a similar way as NODE. This results in the following Nesterov Neural ODE (NesterovNODE)

Figure 2: Contrasting the increase in the
l2-norm of h(t) for NODE, ANODE, SON-
ODE, HBNODE, GHBNODE, NesterovN-
ODE, and GNesterovNODE over long inte-
gration time on the Silverbox Initialization
task (More details in Appendix D.1).

h00(t) +
3

t
h0(t) + f(h(t), t, ✓) = 0, (9)

This second-order NesterovNODE can be written in term
of the first-order NesterovNODE as

8
<

:

h0(t) = m(t),

m0(t) = �
3

t
m(t)� f(h(t), t, ✓).

(10)

However, because of the singularity created by the coef-
ficient 3

t , the training process based directly on Eq. (9)
and (10) will be unstable. To avoid the instability issue,
we set h(t) = k(t)x(t) with k(t) = t

� 3
2 e

t
2 . Then Eq. (8)

becomes

k(t)x00(t) +

✓
2k0(t) +

3

t
k(t)

◆
x0(t) +

✓
k
00(t) +

3

t
k
0(t)

◆
x(t) +rF (h(t)) = 0. (11)

We observe that 2k0(t) + 3
t k(t) = k(t). By dividing both sides of Eq. (11) by k(t), we obtain:

x00(t) + x0(t) + f(h(t), t) = 0, (12)

where

f(h(t), t) =
1

4

�
t
2
� 3

�
t
� 1

2 e
� t

2h(t) + t
3
2 e

�t
2 rF (h(t)) .

Let m(t) = x0(t). Then Eq. (8) is equivalent to the following differential-algebraic system
8
><

>:

h(t) = t
�3
2 e

t
2x(t),

x0(t) = m(t),

m0(t) = �m(t)� f(h(t), t).

(13)

We parameterize f(h(t), t) as a neural network, recalled as f(h(t), t, ✓) with learnable parameter ✓,
and obtain the differential-algebraic version of NesterovNODE

8
><

>:

h(t) = t
�3
2 e

t
2x(t),

x0(t) = m(t),

m0(t) = �m(t)� f(h(t), t, ✓).

(14)

The singularity at t = 0 of the NesterovNODE in Eqs. (9) and (10) is now moved to the algebraic
equation of the above differential-algebraic system.

4

It is often the case when training ODE-based models that some functions diverge or explode at a
finite time. This phenomenon is called blow-up, which we demonstrate in Fig. 2. In order to alleviate
the blow-up problem, we introduce a generalized version of NesterovNODE, termed Generalized
NesterovNODE (GNesterovNODE). For the NesterovNODE, the potential blow-up is due to the
oscillation inherited from NAG scheme as can be seen in Fig. 1. The blow-up can also occur because
of the singularity caused by the factor t

�3
2 e

t
2 in the algebraic equation. Following the techniques

presented in [60], we address these potential blow-up by applying an activation function � to the
function f(h(t), t, ✓), the factor t

�3
2 e

t
2 , and the momentum state m(t) of the NesterovNODE. The

activation function can be any activation function commonly used. In our experiments, we use
tanh and hardtanh. In addition, the residual term ⇠h(t), which stands for a skip connection [16],
is also added into the governing equation of m(t), which benefits training and generalization of
GNesterovNODEs. The GNesterovNODE differential-algebraic system is then given by

8
><

>:

h(t) = �(t
�3
2 e

t
2)x(t),

x0(t) = �(m(t)),

m0(t) = �m(t)� �(f(h(t), t, ✓))� ⇠h(t),

(15)

with the initial conditions h(0) = h0, x(0) = x0, m(0) = m0. It is noted that, from h(0) = h0

and h0(0) = 0, we must have x0 = h0 lim
t!0

�(t
�3
2 e

t
2)�1 and m0 = h0 lim

t!0

d
dt�(t

�3
2 e

t
2)�1. Fig. 2

shows that GNesterovNODE can indeed control the growth of h(t) effectively.

In general, GNesterovNODEs form a wide class of neural differential equations which are represented
by differential-algebraic systems and contain NesterovNODEs as a subclass. Eqs. (9) and (15)
define the forward ODE for the (G)NesterovNODE. To efficiently update the parameters during the
training process based on (G)NesterovNODEs, we use the continuous adjoint sensitivity given in
Propositions 1 and 2 below.
Proposition 1 (Continuous adjoint equation for the second-order NesterovNODE). The continuous
adjoint state a(t) = @L

@h(t) of the NesterovNODE given in Eq. (9) satisfies the following NesterovN-
ODE

a00(t)�
3

t
a0(t) + a(t)

@f(h(t), t, ✓)

@h
+

3

t2
a(t) = 0. (16)

Proposition 2 (Continuous adjoint equation for GNesterovNODE). The continuous adjoint state
functions ah(t) := @L

@h(t) , ax(t) := @L
@x(t) and am(t) := @L

@m(t) of the GNesterovNODE system given
in Eq. (15) satisfy the following differential-algebraic adjoint system

8
>>><

>>>:

ah(t) = �(t
�3
2 e

t
2)�1ax(t),

a0x(t) = t
�3
2 e

t
2 am(t)

@�(f(h(t), t))

@h
+ ⇠I

�
,

a0m(t) = am(t)� ax(t)�
0(m(t)),

(17)

with the final value conditions ah(T) = @L
@hT

, ax(T) = @L
@xT

and am(T) = @L
@mT

.

4 The Effectiveness of GNesterovNODE in Alleviating Vanishing Gradients
In neural networks with many layers, the vanishing gradient is one of the major issues [40]. In the
cases of NODEs and their hybrid ODE-RNN variants, the vanishing gradient issue may occur when
the adjoint state a(t) := @L

@h(t) goes to 0 quickly as T � t increases. In this section, we will prove
that this vanishing gradient issue can be avoided in GNesterovNODEs.

For the GNesterovNODE given in Eq. (15), the gradient @L
@ht

can be determined from @L
@xt

via the
algebraic relation:

@L

@ht
=

@L

@xt

@xt

@ht
= �(t

�3
2 e

t
2)�1 @L

@xt
.

While the gradients @L
@xt

and @L
@mt

satisfy the following proposition.

5

Figure 3: Plot of the l2-norm of the adjoint states for ODE-RNN, GHBNODE-RNN, NesterovNODE-RNN
and GNesterovNODE-RNN back-propagated from the last time stamp. The term T � t demonstrates the gap
between the final time T and intermediate time t. When the gap T � t becomes larger, NesterovNODE-RNN and
GNesterovNODE-RNN can address the vanishing gradient problem due to the adjoint states of these methods’
decay slowly.

Proposition 3. For every t 2 (0, T), there exist a unit length row vector v 2 CN and an upper
triangular matrix U 2 CN⇥N such that

����

@L

@xt

@L

@mt

�����
2

= kv exp(U)k2

����

@L

@xT

@L

@mT

�����
2

,

and at least N
2 complex values in the diagonal of U have the real parts greater than or equal to t�T

2 .

The term v exp(U) in the above proposition plays the essential role in the nonvanishing gradient issue.

Without loss of generality, we can assume that U =

Ularge P

0 Usmall

�
where all complex numbers in

the diagonal of Ularge (resp. Usmall) have the real parts greater than or equal to (resp. smaller than)
1
2 (t� T). According to Proposition 3, the size of Ularge is at least N/2. Then we have,

exp(U) =

exp(Ularge) P̃

0 exp(Usmall)

�
and kv exp(U)k2 � kvlarge exp(Ularge)k2 .

Here, the vector vlarge is the first m columns of v, and m is the size of Ularge. Since the real parts
of elements in the diagonal of Ularge is no less than 1

2 (t � T), exp(Ularge) decays at a rate at most
1
2 (t� T). This results in the nonvanishing gradient of

h
@L
@xt

@L
@mt

i
, hence so is

h
@L
@ht

@L
@xt

@L
@mt

i
.

To illustrate, we take the Walker2D kinematic simulation task [2] in consideration, which
requires learning long-term dependency effectively [27]. We train ODE-RNN [46], GHBNODE-
RNN [60], NesterovNODE-RNN and GNesterovNODE-RNN on this benchmark dataset (More
details in Appendix D.4). Fig. 3 plots

��� @L
@ht

���
2

for ODE-RNN,
���
h

@L
@ht

@L
@mt

i���
2

for GHBNODE-

RNN and
���
h

@L
@ht

@L
@xt

@L
@mt

i���
2

for NesterovNODE-RNN and GNesterovNODE-RNN, showing
that when the gap between the final time T and intermediate time t becomes larger, the adjoint states
of NesterovNODE-RNN, GNesterovNODE-RNN and GHBNODE-RNN decay much more slowly
than NODE-RNN. Thus, NesterovNODE-RNN and GNesterovNODE-RNN have the ability to tackle
the vanishing gradient issue.
Remark 3. The gradient exploding problem can be effectively resolved via gradient clipping, training
loss regularization, etc. [40, 10]. Therefore, in practice the vanishing gradient problem is the major
issue for training deep neural networks [40].

5 Experimental Results
In this section, we empirically study the advantages of our proposed NesterovNODE/GNesterovN-
ODE over the baseline NODEs and other popular NODE-based architectures, including the augmented
NODE (ANODE) [9], the Second Order NODE (SONODE) [37], HBNODE/GHBNODE [60] on a
variety of benchmarks including point cloud separation, image classification, and kinetic simulation
which involve different data modalities ranging from point cloud to images and time series. ANODEs
augments the space on which the ODE is solved while SONODEs and (G)HBNODEs solve a second-
order ODE. We aim to show that: (i) NesterovNODEs/GNesterovNODEs require significantly fewer
NFEs while attaining similar or even better accuracy as the baselines; (ii) GNesterovNODEs avoid the
blow-up of h(t) and thus improve over NesterovNODEs; (iii) NesterovNODEs/GNesterovNODEs

6

Table 1: The parameters count for the models in point cloud separation, image classifications, and the Walker2D
kinematic simulation tasks and the test accuracy on CIFAR10/MNIST. Our methods are able to reach similar or
better test accuracy than the baseline methods on CIFAR10 while retaining a similar test accuracy on MNIST.

Number of parameters Test Accuracy
Model PC MNIST CIFAR10 Walker2D CIFAR10 MNIST

NODE 545 85316 173611 9929 0.5466± 0.0051 0.9531 ± 0.0042
ANODE 587 85462 172452 10019 0.6025± 0.0032 0.9816 ± 0.0024

SONODE 541 86179 171635 11471 0.6132± 0.0073 0.9824 ± 0.0013
HBNODE 582 85931 172916 10099 0.5989± 0.0035 0.9814 ± 0.0011
GHBNODE 582 85931 172916 10099 0.6085± 0.0050 0.9817 ± 0.0005

NesterovNODE 581 85930 172915 10098 0.5996± 0.0033 0.9824 ± 0.0015
GNesterovNODE 581 85930 172915 10098 0.6172 ± 0.0064 0.9807 ± 0.0013

Figure 4: Contrasting the NFEs and accuracy of NODE-based baselines and our methods NesterovNODE/GNes-
terovNODE on the CIFAR10 dataset (Tolerance: 10�5).

capture better long-term dependencies than the baselines and achieve better results in long-sequence
modeling tasks.

For all the experiments, we use Adam [23] as the optimizer and Dormand-Prince 5(4) [7] as the
numerical ODE solver. We choose the network architecture used to parameterize f(h(t), t, ✓) so that
our proposed models and the baselines have similar numbers of parameters in our experiments as
shown in Table 1. Other training/model/dataset details are provided in Appendix D. All results are
averaged over 5 runs with different seeds. We conduct the experiments on a server with 6 NVIDIA
2080Ti GPUs with 11GB of GPU memory. Our PyTorch code with documentation can be found at
https://github.com/minhtannguyen/NesterovNODE.

5.1 Image classification
We validate the accuracy and efficiency advantage of NesterovNODE/GNesterovNODE for image
classification on MNIST [6] and CIFAR10 [25] in comparison with other ODE-based baselines. We
follow the same training and model settings as in [60].

NFEs. As shown in Fig. 4, our NesterovNODE and GNesterovNODE reduce the NFEs in both the
forward and the backward propagations compared to the baseline models. Although the augmented
input dimensions in ANODE help reduce the NFEs compared to NODE, second-order methods
reduce the NFEs more significantly. Compared to the other second-order methods i.e. SONODE,
HBNODE, and GHBNODE, GNesterovNODE achieve much better NFE reductions on both MNIST
(see Fig 12 in the Appendix) and CIFAR10, indicating the improvement in efficiency and stability of
our methods over the other second-order baseline models. Such advancement is an essential step to
scale GNesterovNODE to larger and more complex practical tasks.

Accuracy. Table 1 shows that our GNesterovNODE achieves the highest test accuracy on CIFAR10.
On MNIST, NesterovNODE attains the second-highest test accuracy and very close to the best result
from SONODE while being much more efficient than SONODE. This advantage in terms of accuracy
can be associated with the small number of NFEs needed by NesterovNODE and GNesterovNODE
above, which reduces the model complexity and leads to better generalization.

Note that GNesterovNODE improves over NesterovNODE in efficiency and accuracy (on larger and
more challenging benchmark like CIFAR10). This justifies the effectiveness of our solution that
introduces an additional bounded activation function � and the residual term ⇠h(t) to prevent the
blow-up of h(t) as explained in Section 3.

7

https://github.com/minhtannguyen/NesterovNODE

Figure 5: Contrasting the NFEs and training loss of NODE-based baselines and our NesterovNODE/GNes-
terovNODE on the point cloud benchmark. Results are averaged over 50 runs (Tolerance: 10�7).

Figure 6: Contrasting the NFEs and losses of NODE-RNN [4], ANODE-RNN [9], HBNODE-RNN/GHBNODE-
RNN [60], and our NesterovNODE-RNN/GNesterovNODE-RNN on the Walker2D dataset (Tolerance: 10�7).

5.2 Point cloud separation
We perform experiments on a point cloud separation task in order to verify that NesterovNODEs/GNes-
terovNODEs can learn effective features to separate two sets of point clouds. The first set consists
of 40 points drawn from a circle with the radius ||r|| < 0.5, while the second set comprises
80 points drawn from an annulus with the inner and outer radius of 0.85 and 1, respectively, i.e.
0.85 < ||r|| < 1.0. Fig. 5 shows that our NesterovNODE and GNesterovNODE models are able
to converge to 0 loss consistently while other methods have difficulty to reach 0 loss. In addition,
NesterovNODE and especially the GNesterovNODE require significantly fewer NFEs in forward
and backward passes compared to the baselines. Thus, NesterovNODE and GNesterovNODE help
improve both the training and the efficiency of the model. We plot the evolution of the point cloud
separation through 100 epochs for a random run of each model in Appendix D.2. Like SONODE,
HBNODE/GHBNODE, NesterovNODE/GNesterovNODE learn effective features that allow good
separation between the two classes of point clouds in these experiments while NODE and ANODE
fail for this task.

5.3 Walker2D kinematic simulation
In this section, we investigate NesterovNODE/GNesterovNODE when applied on time-series data. In
particular, we use the ODE-RNN framework [46], with the recognition model being set to different
ODE-based models, to study Walker2D kinematic simulation task, which requires learning long-term
dependency effectively [26]. As shown in Fig. 6, our NesterovNODE-RNN and GNesterovNODE-
RNN not only reduce the NFEs both in the forward and the backward stages, but also achieve smaller
test loss compared to the baseline models that we compare with, including (G)HBNODE-RNN,
ANODE-RNN, and NODE-RNN. Although SONODE-RNN achieves much smaller losses, its NFEs
are too high, thus training SONODE-RNN for this task is much more time-consuming compared to
our Nesterov-based methods.

5.4 Continuous Normalizing Flows for MNIST
We compare the GNesterovNODE with the baseline NODE and GHBNODE for use in variational
inference with the continuous normalizing flow model trained on the MNIST dataset. The continuous
normalizing flow model we use is the FFJORD in [14]. We summarize our results in Figure 7. Com-
pared to the FFJORD-NODE and FFJORD-GHBNODE, the FFJORD-GNesterovNODE significantly
reduces the NFEs in both forward and backward passes while improving the negative ELBO on the
test set. This experiment demonstrates that our method GNesterovNODE accelerates NODE-based
models on both discriminative tasks and generative tasks.

6 Observed Properties of NesterovNODE in GNesterovNODE
In this section, we verify empirically that with the addition of the activation function � and the skip
connection, GNesterovNODEs still preserve important properties of NesterovNODEs as stated in Re-

8

Figure 7: Contrasting the NFEs and the validation negative ELBO of the FFJORD-NODE, the FFJORD-
HBNODE, and our FFJORD-GNesterovNODE for the variational inference task with a continuous normalizing
flow model, i.e. FFJORD [14], on the binarized MNIST dataset (Tolerance: 10�5).

Figure 8: Contrasting different values of the factor r on CIFAR10 with GNesterovNODE (Tolerance: 10�5).

mark 1 and Remark 2. This hints that GNesterovNODEs have the same behaviors as NesterovNODEs
while enjoying more stable training.

Effect of the Nesterov factor on NesterovNODE (Remark 1)
As stated in [52], the “magic constant” 3 can be replaced by a constant r > 3 while maintaining
a convergence rate of O(1/k2). In this work’s experiments, a larger r leads to a better test loss
eventually despite a smaller r outperforming in the beginning, but their experiments are based on
Nesterov ODE. This section investigates whether this behavior extends to our generalized method
GNesterovNODE. As shown in Fig. 8 and Table 2, a larger r also leads to a higher test accuracy, and
for r = 3 and r = 5, the model converges to its best test accuracy sooner than r = 10. Although
the training loss of r = 10 is larger than r = 3 and r = 5, we observe that all three values of r
reach their best testing accuracy when the training loss is approximately in the range of [0.65, 0.75],
which hints that decreasing the loss further leads to overfitting. One more interesting observation is
that a higher value of r increases the forward and backward NFEs. Intuitively speaking, the term
�

r
th

0(t) in the NesterovNODE, which is opposite to the product of the damping parameter r/t and
the velocity h0(t), represents the friction force of the model (see [52, Section 4]). When r is larger,
the friction force resists the movement of h(t) along the trajectory stronger, which slows down the
convergence of training loss.

Stability of NesterovNODE (Remark 2)

Table 2: Test accuracy for GNes-
terovNODE on CIFAR10 with
varying Nesterov factors r (Tol-
erance: 10�5).

Value of r Test accuracy

3 0.6180
5 0.6192
10 0.6296

The NesterovNODE is more numerically stable than NODE in the
sense that the step size in the Euler method for solving the Nes-
terovNODE can be chosen larger while the stability of the numerical
solution is still guaranteed (see Remark 2). We hypothesize that
this fact still holds for the GNesterovNODE in comparison with
both NODE and GHBNODE. To illustrate this fact, we perform
experiments on CIFAR10 using Euler solvers with large step sizes
(0.1, 0.2, 0.5). Due to the instability of large step size, GHBNODE
moves fast to the maximum accuracy points and then goes down, as
shown in Fig. 9, while NODE achieves high train loss and low test accuracy. Even when the step
size is big, GNesterovNODE’s training is stable as the curve evolves gradually. More interestingly,
as shown in Fig. 10, GNesterovNODE solved with rk4 (Fourth-order Runge-Kutta with 3/8 rule)
solver using a large step size outperforms the same model solved with the adaptive step size solvers
like dopri5 (Dormand-Prince of order 5) solver. This show the promise of using large step sizes in
GNesterovNODE to obtain models with better accuracy and efficiency.

7 Related Work
Increasing efficiency of training NODEs. Several methods have been proposed to reduce the NFEs
in NODEs and increase the model efficiency. Among them are works that use weight decay [14] and

9

NODE 0.1: 0.829963

NODE 0.2: 504439.8

 NODE 0.5: 50880980

NODE 0.1: 0.5348

NODE 0.2: 0.0997

NODE 0.5: 0.0958

Figure 9: Train loss and test accuracy for large step
sizes of Euler solver on CIFAR10 training with NODE,
GHBNODE and GNesterovNODE. In the legend, we
place the step size next to the model’s name.

Figure 10: Train loss and test accuracy for various
solvers with large step size 0.5 on CIFAR10 training
with GNesterovNODE. In the legend, we place the
step size next to the model’s name.

other regularizers applied on the solver and the learned dynamics [11, 20, 12, 39]. Other works employ
input augmentation [8], data-control [30] and depth-variance [30, 36] to reduce the NFEs needed
to compute the ODE solution. Another method replaces norms with seminorms in the backward
continous adjoint stage to reduce backward NFEs [22]. NesterovNODE solves second-order Nesterov
ODE to reduce both forward and backward NFEs.

Second-order dynamical systems. Second-order ODEs have also been employed to speed up
NODEs. SONODE [37] replaces the first-order ODE in Eq. (1) by a second ODE which can be solved
as a system of first-order ODEs. HBNODE [60] also solves a second-order ODE but with an additional
constant damping parameter, which corresponds to the ODE limit of the HB momentum method.
NesterovNODE solves the second-order Nesterov ODE with a time-dependent damping parameter,
which corresponds to the ODE limit of the NAG momentum method. These momentum-based
systems have also been employed in designing deep neural networks as in [32, 28, 49, 35].

Learning long-term dependencies. The ability of a model to learn long-term dependencies is
highly needed to scale up the model to large-scale tasks that involve very long sequences. Existing
works try to alleviate exploding or vanishing gradient issues happened during the training of recurrent
neural networks, including [1, 59, 19, 55, 31, 17, 34]. Recently, learning long-term dependencies
with NODEs has been explored. For example, [26] integrate a long-short term memory cell into
NODEs. Among the hallmarks of NesterovNODEs is that our proposed models can directly capture
long-term dependencies in long sequences.

8 Concluding Remarks
In this paper, we propose the NesterovNODE and its generalized version GNesterovNODE that
solve the second-order ODE limit of NAG. These models take advantage of the convergence rate
O(1/k2) of the NAG scheme to gain acceleration over NODEs and the existing NODE-based
models such as HBNODE by reducing the NFEs in solving both forward and backward ODEs.
Our Nesterov-based NODEs also achieve better accuracy than NODEs and outperform or at least
are on par with other NODE-based models in our experiments while requiring much fewer NFEs.
We also prove that NesterovNODEs and GNesterovNODEs can avoid the vanishing gradient issue
and can capture long-term dependencies in long sequences effectively. It is worth mentioning
that NesterovNODEs/GNesterovNODEs do not introduce any inherently negative societal impact.
The high-resolution ODE in [51, 50] is an alternative way to take a continuous-time limit of the
NAG scheme and heavy-ball momentum method. This high-resolution ODE introduces a gradient
correction that allows the NAG scheme to achieve an inverse cubic rate for minimizing the squared
gradient norm, which is better than the inverse square rate in the low-resolution ODE that our method
uses. A limitation of our paper is that we have not incorporated restart schemes [38, 45, 56] into the
NesterovNODE, and we leave this as future work.

Acknowledgements
This material is based on research sponsored by the AFOSR MURI FA9550-18-1-0502, the ONR
grant N00014-20-1-2093, the MURI N00014-20-1-2787, and the NSF under Grant# 2030859 to the
Computing Research Association for the CIFellows Project (CIF2020-UCLA-38). NH acknowledges
support from the NSF IFML 2019844 and the NSF AI Institute for Foundations of Machine Learning.

10

References
[1] Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks.

In International Conference on Machine Learning, pages 1120–1128, 2016.

[2] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016.

[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[4] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

[5] Edward De Brouwer, Jaak Simm, Adam Arany, and Yves Moreau. Gru-ode-bayes: Continuous
modeling of sporadically-observed time series. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

[6] Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

[7] John R Dormand and Peter J Prince. A family of embedded runge-kutta formulae. Journal of
computational and applied mathematics, 6(1):19–26, 1980.

[8] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[9] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[10] N Benjamin Erichson, Omri Azencot, Alejandro Queiruga, Liam Hodgkinson, and Michael W
Mahoney. Lipschitz recurrent neural networks. arXiv preprint arXiv:2006.12070, 2020.

[11] Chris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan, and Adam M. Oberman. How to train
your neural ode: the world of jacobian and kinetic regularization. In ICML, pages 3154–3164,
2020.

[12] Arnab Ghosh, Harkirat Behl, Emilien Dupont, Philip Torr, and Vinay Namboodiri. Steer :
Simple temporal regularization for neural ode. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 14831–14843. Curran Associates, Inc., 2020.

[13] Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, and David Duvenaud. Scalable re-
versible generative models with free-form continuous dynamics. In International Conference
on Learning Representations, 2019.

[14] Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, and David Duvenaud. Scalable reversible
generative models with free-form continuous dynamics. In International Conference on Learn-
ing Representations, 2019.

[15] Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse problems,
34(1):014004, 2017.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for im-
age recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016.

11

[17] Kyle Helfrich, Devin Willmott, and Qiang Ye. Orthogonal recurrent neural networks with
scaled Cayley transform. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 1969–1978, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

[18] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[19] Li Jing, Yichen Shen, Tena Dubcek, John Peurifoy, Scott Skirlo, Yann LeCun, Max Tegmark,
and Marin Soljačić. Tunable efficient unitary neural networks (eunn) and their application to
rnns. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pages 1733–1741. JMLR. org, 2017.

[20] Jacob Kelly, Jesse Bettencourt, Matthew J Johnson, and David K Duvenaud. Learning differen-
tial equations that are easy to solve. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,
and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages
4370–4380. Curran Associates, Inc., 2020.

[21] Patrick Kidger. On neural differential equations. arXiv preprint arXiv:2202.02435, 2022.

[22] Patrick Kidger, Ricky TQ Chen, and Terry J Lyons. ” hey, that’s not an ode”: Faster ode adjoints
via seminorms. In ICML, pages 5443–5452, 2021.

[23] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

[24] Jonas Köhler, Leon Klein, and Frank Noé. Equivariant flows: exact likelihood generative
learning for symmetric densities. In International Conference on Machine Learning, pages
5361–5370. PMLR, 2020.

[25] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[26] Mathias Lechner and Ramin Hasani. Learning long-term dependencies in irregularly-sampled
time series, 2020.

[27] Mathias Lechner and Ramin M. Hasani. Learning long-term dependencies in irregularly-
sampled time series. CoRR, abs/2006.04418, 2020.

[28] Huan Li, Yibo Yang, Dongmin Chen, and Zhouchen Lin. Optimization algorithm inspired deep
neural network structure design. In Asian Conference on Machine Learning, pages 614–629.
PMLR, 2018.

[29] M Luštrek, B Kaluža, Rok Piltaver, Jana Krivec, and Vedrana Vidulin. Localization data for
person activity data set, 2010.

[30] Stefano Massaroli, Michael Poli, Jinkyoo Park, Atsushi Yamashita, and Hajime Asama. Dissect-
ing neural odes. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 3952–3963. Curran
Associates, Inc., 2020.

[31] Zakaria Mhammedi, Andrew Hellicar, Ashfaqur Rahman, and James Bailey. Efficient orthogonal
parametrisation of recurrent neural networks using householder reflections. In Proceedings of
the 34th International Conference on Machine Learning-Volume 70, pages 2401–2409. JMLR.
org, 2017.

[32] Thomas Moreau and Joan Bruna. Understanding the learned iterative soft thresholding algorithm
with matrix factorization. arXiv preprint arXiv:1706.01338, 2017.

[33] Yurii E Nesterov. A method for solving the convex programming problem with convergence
rate o (1/kˆ 2). In Dokl. Akad. Nauk Sssr, volume 269, pages 543–547, 1983.

12

[34] Tan M Nguyen, Richard Baraniuk, Andrea Bertozzi, Stanley Osher, and Bao Wang. Momen-
tumrnn: Integrating momentum into recurrent neural networks. In H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing
Systems (NeurIPS), volume 33, pages 1924–1936. Curran Associates, Inc., 2020.

[35] Tan M Nguyen, Richard Baraniuk, Robert Kirby, Stanley Osher, and Bao Wang. Momentum
transformer: Closing the performance gap between self-attention and its linearization. In
Mathematical and Scientific Machine Learning, pages 189–204. PMLR, 2022.

[36] Tan M Nguyen, Animesh Garg, Richard G Baraniuk, and Anima Anandkumar. Infocnf: An
efficient conditional continuous normalizing flow with adaptive solvers. Asilomar Conference,
2022.

[37] Alexander Norcliffe, Cristian Bodnar, Ben Day, Nikola Simidjievski, and Pietro Lió. On second
order behaviour in augmented neural odes. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 5911–5921. Curran Associates, Inc., 2020.

[38] Brendan O’donoghue and Emmanuel Candes. Adaptive restart for accelerated gradient schemes.
Foundations of Computational Mathematics, 15(3):715–732, 2015.

[39] Avik Pal, Yingbo Ma, Viral Shah, and Christopher V Rackauckas. Opening the blackbox:
Accelerating neural differential equations by regularizing internal solver heuristics. In Marina
Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pages 8325–8335. PMLR,
18–24 Jul 2021.

[40] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent
neural networks. In International Conference on Machine Learning, pages 1310–1318, 2013.

[41] Boris T Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

[42] Lev Semenovich Pontryagin. Mathematical theory of optimal processes. CRC press, 1987.

[43] Christopher Rackauckas, Mike Innes, Yingbo Ma, Jesse Bettencourt, Lyndon White, and Vaib-
hav Dixit. Diffeqflux.jl - A julia library for neural differential equations. CoRR, abs/1902.02376,
2019.

[44] Christopher Rackauckas and Qing Nie. Differentialequations.jl – a performant and feature-rich
ecosystem for solving differential equations in julia. The Journal of Open Research Software,
5(1), 2017. Exported from https://app.dimensions.ai on 2019/05/05.

[45] Vincent Roulet and Alexandre d’Aspremont. Sharpness, restart and acceleration. In Advances
in Neural Information Processing Systems, pages 1119–1129, 2017.

[46] Yulia Rubanova, Ricky T. Q. Chen, and David K Duvenaud. Latent ordinary differential
equations for irregularly-sampled time series. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

[47] Lars Ruthotto and Eldad Haber. Deep neural networks motivated by partial differential equations.
Journal of Mathematical Imaging and Vision, pages 1–13, 2019.

[48] Lars Ruthotto, Stanley J. Osher, Wuchen Li, Levon Nurbekyan, and Samy Wu Fung. A machine
learning framework for solving high-dimensional mean field game and mean field control
problems. Proceedings of the National Academy of Sciences, 117(17):9183–9193, 2020.

[49] Michael E. Sander, Pierre Ablin, Mathieu Blondel, and Gabriel Peyré. Momentum residual
neural networks. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pages 9276–9287. PMLR, 18–24 Jul 2021.

13

[50] Bin Shi, Simon S Du, Michael I Jordan, and Weijie J Su. Understanding the acceleration
phenomenon via high-resolution differential equations. Mathematical Programming, pages
1–70, 2021.

[51] Bin Shi, Simon S Du, Weijie Su, and Michael I Jordan. Acceleration via symplectic discretiza-
tion of high-resolution differential equations. Advances in Neural Information Processing
Systems, 32, 2019.

[52] Weijie Su, Stephen Boyd, and Emmanuel Candes. A differential equation for modeling nes-
terov’s accelerated gradient method: Theory and insights. In Advances in Neural Information
Processing Systems, pages 2510–2518, 2014.

[53] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on,
pages 5026–5033. IEEE, 2012.

[54] Ch Tsitouras. Runge–kutta pairs of order 5 (4) satisfying only the first column simplifying
assumption. Computers & Mathematics with Applications, 62(2):770–775, 2011.

[55] Eugene Vorontsov, Chiheb Trabelsi, Samuel Kadoury, and Chris Pal. On orthogonality and learn-
ing recurrent networks with long term dependencies. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 3570–3578. JMLR. org, 2017.

[56] Bao Wang*, Tan M Nguyen*, Andrea L Bertozzi, Richard G Baraniuk, and Stanley J Osher.
Scheduled restart momentum for accelerated stochastic gradient descent. SIAM Journal on
Imaging Sciences, 2022.

[57] E Weinan. A proposal on machine learning via dynamical systems. Communications in
Mathematics and Statistics, 5(1):1–11, 2017.

[58] Torbjörn Wigren and Johan Schoukens. Three free data sets for development and benchmarking
in nonlinear system identification. In 2013 European control conference (ECC), pages 2933–
2938. IEEE, 2013.

[59] Scott Wisdom, Thomas Powers, John Hershey, Jonathan Le Roux, and Les Atlas. Full-capacity
unitary recurrent neural networks. In Advances in Neural Information Processing Systems,
pages 4880–4888, 2016.

[60] Hedi Xia, Vai Suliafu, Hangjie Ji, Tan Minh Nguyen, Andrea Bertozzi, Stanley Osher, and
Bao Wang. Heavy ball neural ordinary differential equations. In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems,
2021.

[61] Cagatay Yildiz, Markus Heinonen, and Harri Lahdesmaki. Ode2vae: Deep generative second
order odes with bayesian neural networks. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

[62] Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. Symplectic ode-net: Learning
hamiltonian dynamics with control. In International Conference on Learning Representations,
2020.

14

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 8
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 8
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

15

	Introduction
	Contribution
	Organization

	 An Integration of Nesterov ODEs into NODEs
	Generalize Nesterov ODEs to Differential-Algebraic Systems
	The Effectiveness of GNesterovNODE in black Alleviating Vanishing Gradients
	Experimental Results
	Image classification
	Point cloud separation
	Walker2D kinematic simulation
	Continuous Normalizing Flows for MNIST

	Observed Properties of NesterovNODE in GNesterovNODE
	Related Work
	Concluding Remarks
	Review of the adjoint equation and the gradient for the first-order NODEs
	The adjoint equations for the NesterovNODEs and GNesterovNODEs
	Proof of Proposition 3 - the nonvanishing gradient for GNesterovNODEs
	Implementation details
	Experimental details used in Section 3 Silverbox Initialization Test
	Experimental details used in the Point Cloud benchmark in Section 5.2
	Experimental details for MNIST/CIFAR10 in Section 5.1
	Experimental details for Walker2D in Section 5.3
	Experimental details for Continous Normalizing Flow for VAE on the MNIST dataset in Section 5.4

	Additional experiments
	Integration time
	The Effect of Nesterov factor regarding the solver's tolerance
	GPU memory consumption
	Wall-clock time advantage of NesterovNODEs/GNesterovNODEs
	The Effect of using Seminorm for reducing backward NFEs on GNesterovNODE
	Human Activity Dataset

	Solving Neural Differential-Algebraic Equations

