PopArt: Efficient Sparse Regression and Experimental Design for Optimal Sparse Linear Bandits

Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track

Bibtex Paper Supplemental

Authors

Kyoungseok Jang, Chicheng Zhang, Kwang-Sung Jun

Abstract

In sparse linear bandits, a learning agent sequentially selects an action from a fixed action set and receives reward feedback, and the reward function depends linearly on a few coordinates of the covariates of the actions. This has applications in many real-world sequential decision making problems. In this paper, we devise a simple, novel sparse linear estimation method called $\textrm{PopArt}$ that enjoys a tighter $\ell_1$ recovery guarantee compared to Lasso (Tibshirani, 1996). Our bound naturally motivates an experimental design criterion that is convex and thus computationally efficient to solve. Based on our novel estimator and design criterion, we derive sparse linear bandit algorithms that enjoy improved regret upper bounds upon the state of the art (Hao et al., 2020), especially in terms of the geometry of the given action set. Finally, we prove a matching lower bound for sparse linear bandits in the data-poor regime, which closes the gap between upper and lower bounds in prior work.