
PopArt: Efficient Sparse Regression and Experimental
Design for Optimal Sparse Linear Bandits

Kyoungseok Jang
University of Arizona
ksajks@arizona.edu

Chicheng Zhang
University of Arizona

chichengz@cs.arizona.edu

Kwang-Sung Jun
University of Arizona

kjun@cs.arizona.edu

Abstract

In sparse linear bandits, a learning agent sequentially selects an action and receive
reward feedback, and the reward function depends linearly on a few coordinates of
the covariates of the actions. This has applications in many real-world sequential
decision making problems. In this paper, we propose a simple and computationally
efficient sparse linear estimation method called POPART that enjoys a tighter ℓ1
recovery guarantee compared to Lasso (Tibshirani, 1996) in many problems. Our
bound naturally motivates an experimental design criterion that is convex and
thus computationally efficient to solve. Based on our novel estimator and design
criterion, we derive sparse linear bandit algorithms that enjoy improved regret
upper bounds upon the state of the art (Hao et al., 2020), especially w.r.t. the
geometry of the given action set. Finally, we prove a matching lower bound for
sparse linear bandits in the data-poor regime, which closes the gap between upper
and lower bounds in prior work.

1 Introduction

In many modern science and engineering applications, high-dimensional data naturally emerges,
where the number of features significantly outnumber the number of samples. In gene microarray
analysis for cancer prediction [30], for example, tens of thousands of genes expression data are
measured per patient, far exceeding the number of patients. Such practical settings motivate the study
of high-dimensional statistics, where certain structures of the data are exploited to make statistical
inference possible. One representative example is sparse linear models [19], where we assume that a
linear regression task’s underlying predictor depends only on a small subset of the input features.

On the other hand, online learning with bandit feedback, due to its practicality in many applications
such as online news recommendations [25] or clinical trials [26, 41], has attracted a surge of research
interests. Of particular interest is linear bandits, where in n rounds, the learner repeatedly takes
an action At (e.g., some feature representation of a product or a medicine) from a set of available
actions A ⊂ Rd and receives a reward rt = ⟨θ∗,At⟩ + ηt as feedback where ηt ∈ R is an independent
zero-mean, σ-sub-Gaussian noise. Sparsity structure is abundant in linear bandit applications: for
example, customers’ interests on a product depend only on a number of its key specs; the effectiveness
of a medicine only depends on a number of key medicinal properties, which means that the unknown
parameter θ∗ sparse; i.e., it has a small number of nonzero entries.

Early studies [2, 8, 24] on sparse linear bandits have revealed that leveraging sparsity assumptions
yields bandit algorithms with lower regret than those provided by full-dimensional linear bandit
algorithms [3, 4, 11, 1]. However, most existing studies either rely on a particular arm set (e.g., a
norm ball), which is unrealistic in many applications, or use computationally intractable algorithms.
If we consider an arbitrary arm set, however, the optimal worst-case regret is Θ(

√
sdn) where s

is the sparsity level of θ∗, which means that as long as n = O(sd), there exists an instance for
which the algorithm suffers a linear regret [23]. This is in stark contrast to supervised learning
36th Conference on Neural Information Processing Systems (NeurIPS 2022).

REGRET BOUND DATA-POOR ASSUMPTIONS

HAO ET AL. [18] Õ(s2/3C
−2/3
min n2/3

) ✓ A SPANS Rd

HAO ET AL. [18] Ω(s1/3κ−2/3n2/3
) ✓ A SPANS Rd

ALGORITHM 3 (OURS) Õ(s2/3H
2/3
∗ n2/3

) ✓ A SPANS Rd

THEOREM 5 (OURS) Ω(s2/3κ−2/3n2/3
) ✓ A SPANS Rd

HAO ET AL. [18] Õ(
√

C
−1
minsn) ✗ A SPANS Rd , MIN. SIGNAL

ALGORITHM 4 (OURS) Õ(
√
sn) ✗ A SPANS Rd , MIN. SIGNAL

Table 1: Regret bounds of our work and the prior art where s, d, n are the sparsity level, the feature
dimension, and the number of rounds, respectively. The quantities Cmin and H2

∗ are the constants that
captures the geometry of the action set (see Eq. (6) and (5)), and κ is a parameter for a specific family
of arm sets that satisfies κ−2 = Θ(C−1min) = Θ(H

2
∗). In general, H2

∗ ≤ C
−1
min ≤ C

−2
min (Propositon 2).

where it is possible to enjoy nontrivial prediction error bounds for n = o(d) [16]. This motivates a
natural research question: Can we develop computationally efficient sparse linear bandit algorithms
that allow a generic arm set yet enjoy nonvacuous bounds in the data-poor regime by exploiting
problem-dependent characteristics?

The seminal work of Hao et al. [18] provides a positive answer to this question. They propose
algorithms that enjoy nonvacuous regret bounds with an arbitrary arm set in the data poor regime
using Lasso. Specifically, they have obtained a regret bound of Õ(Cmin

−2/3s2/3n2/3) where Cmin is an
arm-set-dependent quantity. However, their work still left a few open problems. First, their regret
upper bound does not match with their lower bound Ω(Cmin

−1/3s1/3n2/3). Second, it is not clear if
Cmin is the right problem-dependent constant that captures the geometry of the arm set.

In this paper, we make significant progress in high-dimensional linear regression and sparse linear
bandits, which resolves or partly answers the aforementioned open problems.

First (Section 3), we propose a novel and computationally efficient estimator called POPART (POPu-
lation covariance regression with hARd Thresholding) that enjoys a tighter ℓ1 norm recovery bound
than the de facto standard sparse linear regression method Lasso in many problems. Motivated by the
ℓ1 norm recovery bound of POPART, we develop a computationally-tractable design of experiment
objective for finding the sampling distribution that minimize the error bound of POPART, which is
useful in settings where we have control on the sampling distribution (such as compressed sensing).
Our design of experiments results in an ℓ1 norm error bound that depends on the measurement set de-
pendent quantity denoted by H2

∗ (see Eq. (5) for precise definition) that is provably better than Cmin
−1

that appears in the ℓ1 norm error bound used in Hao et al. [18], thus leading to an improved planning
method for sparse linear bandits. Second (Section 4), Using POPART, we design new algorithms for
the sparse linear bandit problem, and improve the regret upper bound of prior work [18]; see Table 1
for the summary. Third (Section 5), We prove a matching lower bound in data-poor regime, showing
that the regret rate obtained by our algorithm is optimal. The key insight in our lower bound is a
novel application of the algorithmic symmetrization technique [34]. Unlike the conjecture of Hao
et al. [18, Remark 4.5], the improvable part was not the algorithm but the lower bound for sparsity s.

We empirically verify our theoretical findings in Section 6 where POPART shows a favorable per-
formance over Lasso. Finally, we conclude our paper with future research enabled by POPART in
Section 7. For space constraint, we discuss related work in Appendix A but closely related studies
are discussed in depth throughout the paper.

2 Problem Definition and Preliminaries

Sparse linear bandits. We study the sparse linear bandit learning setting, where the learner is given
access to an action space A ⊂ {a ∈ Rd ∶ ∥a∥∞ ≤ 1}, and repeatedly interacts with the environment
as follows: at each round t = 1, . . . , n, the learner chooses some action At ∈ A, and receives reward
feedback rt = ⟨θ∗,At⟩+ηt, where θ∗ ∈ Rd is the underlying reward predictor, and ηt is an independent
zero-mean σ-subgaussian noise. We assume that θ∗ is s-sparse; that is, it has at most s nonzero
entries. The goal of the learner is to minimize its pseudo-regret defined as

Reg(n) = nmax
a∈A
⟨θ∗, a⟩ −

n

∑
t=1
⟨θ∗,At⟩.

2

Experimental design for linear regression. In the experimental design for linear regression problem,
one has a pool of unlabeled examples X , and some underlying predictor θ∗ to be learned. Querying
the label of x, i.e. conducting experiment x, reveals a random label y = ⟨θ∗, x⟩ + η associated with it,
where η is a zero mean noise random variable. The goal is to accurately estimate θ∗, while using as
few queries x as possible.

Definition 1. (Population covariance matrix Q) Let P(X) be the space of probability measures
over X with the Borel σ-algebra, and define the population covariance matrix for the distribution
µ ∈ P(X) as follows:

Q(µ) ∶= ∫
a∈X

aa⊺dµ(a) (1)

Classical approaches for experimental design focus on finding a distribution µ such that its induced
population covariance matrix Q(µ) has properties amenable for building a low-error estimator, such
as D-, A-, G-optimality [14].

Compatibility condition for Lasso. For a positive definite matrix Σ ∈ Rd×d and a sparsity level
s ∈ [d] ∶= {1, . . . , d}, we define its compatibility constant ϕ20(Σ, s) as follows:

ϕ20(Σ, s) ∶= min
S⊆[d]∶∣S∣=s

min
v∶∥vS∥1≤3∥v−S∥1

sv⊺Σv

∥vS∥21
, (2)

where vS ∈ Rd denotes the vector that agrees with v in coordinates in S and 0 everywhere else and
v−S ∈ Rd denotes v − vS .

Notation. Let ei be the i-th canonical basis vector. We define [x] = {1,2, . . . , x}. Let supp(θ) be
the set of coordinate indices i where θi ≠ 0. We use a ≲ b to denote that there exists an absolute
constant c such that a ≤ cb.

3 Improved Linear Regression and Experimental Design for Sparse Models

In this section, we discuss our novel sparse linear estimator POPART for the setting where the
population covariance matrix is known and show its strong theoretical properties. We then present a
variation of POPART called WARM-POPART that amends a potential weakness of POPART, followed
by our novel experimental design for POPART and discuss its merit over prior art.

POPART (POPulation covariance regression with hARd Thresholding). Unlike typical estimators
for the statistical learning setup, our main estimator POPART described in Algorithm 1 takes the
population covariance matrix denoted by Q as input. We summarize our assumption for POPART.

Assumption 1. (Assumptions on the input of POPART) There exists µ such that the input data points
{(Xt, Yt)}

n
t=1 satisfy that Xt

i.i.d.
∼ µ and Q = Q(µ) ∶= EX∼µ[XX

⊺]. Furthermore, Yt = ⟨θ∗,Xt⟩+ηt
with ηt being zero-mean σ-subgaussian noise. Also, R0 ≥maxa∈A ∣⟨a, θ

∗ − θ0⟩∣.

Algorithm 1 POPART (POPulation covariance regression with hARd Thresholding)

1: Input: Samples {(Xt, Yt)}
n
t=1, the population covariance matrix Q ∈ Rd×d, pilot estimator

θ0 ∈ Rd, an upper bound R0 of maxa∈A ∣⟨a, θ
∗ − θ0⟩∣, failure rate δ.

2: Output: estimator θ̂
3: for t = 1, . . . , n do
4: θ̃t = Q

−1Xt(Yt − ⟨Xt, θ0⟩) + θ0
5: end for
6: ∀i ∈ [d], θ′i = Catoni({θ̃ti ∶= ⟨θ̃t, ei⟩}nt=1, αi,

δ
2d
) where αi ∶=

¿
Á
ÁÀ

2 log 2d
δ

n(R2
0+σ2)(Q−1)ii(1+

2 log 2d
δ

n−2 log 2d
δ

)

7: θ̂ ← clipλ(θ
′) ∶= [θ′i 1(∣θ

′
i∣ > λi)]

d
i=1 where λi is defined in Proposition 1.

8: return θ̂

POPART consists of several stages. In the first stage, for each (Xt, Yt) pair, we create a one-
sample estimator θ̃t (step 4). The estimator, θ̃t, can be viewed as a generalization of doubly-robust
estimator [10, 12] for linear models. Specifically, it is the sum of two parts: one is the pilot estimator

3

θ0 that is a hyperparameter of POPART; the other is Q(µ)−1Xt(Yt − ⟨Xt, θ0⟩), an unbiased estimator
of the difference θ∗ − θ0. Thus, it is not hard to see that θ̃t is an unbiased estimator of θ∗. As we
will see in Theorem 1, the variance of θ̃t is smaller when θ0 is closer to θ∗, showing the advantage
of allowing a pilot estimator θ0 as input. If no good pilot estimator is available a priori, one can set
θ0 = 0.

From the discussion above, it is natural to take an average of θ̃t. Indeed, when n is large, the population
covariance matrix Q(π) is close to empirical covariance matrix Q̂ ∶= 1

n ∑
n
t=1XtX

⊺
t , which makes

θ̂avg ∶=
1
n ∑

n
t=1 θ̃t close to the ordinary least squares estimator θ̂OLS = Q̂

−1(1
n ∑

n
t=1XtYt). However,

for technical reasons, the concentration property of θ̃avg is hard to establish. This motivates POPART’s
second stage (step 6), where, for each coordinate i ∈ [d], we employ Catoni’s estimator [27] (see
Appendix B for a recap) to obtain an intermediate estimate for each θ∗i , namely θ′i.

To use Catoni’s estimator, we need to have an upper bound of the variance of θ′i for its αi parameter.
A direct calculation yields that, for all i ∈ [d] and t ∈ [n],

Var(θ̃ti) ≤ (max
a∈A
⟨θ∗ − θ0, a⟩

2
+ σ2
)max

i
(Q(µ)−1)ii

where θ̃ti ∶= ⟨θ̃t, ei⟩. This implies that (R2
0 + σ

2)maxi(Q(µ)
−1)ii is an upper bound of Var(θ̃ti). By

the standard concentration inequality of Catoni’s estimator (see Lemma 1), we obtain the following
estimation error guarantee for θ′i; the proof can be found in Appendix C.1. Hereafter, all proofs are
deferred to appendix unless noted otherwise.

Proposition 1. Suppose Assumption 1 holds. In POPART, for i ∈ [d], if n ≥ 2 ln 2d
δ

, the following
inequality holds with probability 1 − δ

d
:

∣θ′i − θ
∗
i ∣ <

√
4(R2

0 + σ
2)(Q(µ)−1)2ii
n

log
2d

δ
=∶ λi

Proposition 1 shows that, for each coordinate i, (θ′i − λi, θ
′
i + λi) forms a confidence interval for

θ∗i . Therefore, if 0 ∉ (θ′i − λi, θ
′
i + λi), we can infer that θ∗i ≠ 0, i.e., i ∈ supp(θ∗). Based on

the observation above, POPART’s last stage (step 7) performs a hard-thresholding for each of the
coordinates of θ′, using the threshold λi for coordinate i. Thanks to the thresholding step, with
high probability, θ̂’s support is contained in that of θ∗, which means that all coordinates i outside
the support of θ∗ (typically the vast majority of the coordinates when s ≪ d) satisfy θ̂i = θ∗i = 0.
Meanwhile, for coordinate i’s in supp(θ∗), the estimated value θ̂i is not too far from θ∗i .

The following theorem states POPART’s estimation error bound in terms of its output θ̂’s ℓ∞, ℓ0,
and ℓ1 errors, respectively. We remark that replacing hard thresholding in the last stage with soft
thresholding enjoys similar guarantees.

Theorem 1. Take Assumption 1. Let H2(Q) ∶=maxi∈[d](Q
−1)ii. Then, POPART has the following

guarantees with probability at least 1 − δ:

(i) ∀i ∈ [d], ∣θ̂i − θ
∗
i ∣ < 2

√
4(R2

0+σ2)(Q(µ)−1)ii
n

log 2d
δ

so ∥θ̂ − θ∗∥∞ < 2
√

4(R2
0+σ2)H2(Q(µ))

n
log 2d

δ
,

(ii) supp(θ̂) ⊂ supp(θ∗) so ∥θ̂ − θ∗∥0 ≤ s,

(iii) ∥θ̂ − θ∗∥1 ≤ 2s
√

4(R2
0+σ2)H2(Q(µ))

n
log 2d

δ

Interestingly, POPART has no false positive for identifying the sparsity pattern and enjoys an ℓ∞ error
bound, which is not available from Lasso, to our knowledge. Unfortunately, a direct comparison with
Lasso is nontrivial since the largest compatibility constant ϕ20(Σ̂, s) is defined as the solution of the
optimization problem (2), let alone the fact that ϕ20(Σ̂, s) is a function of the empirical covariance
matrix. While we leave further investigation as future work, our experiment results in Section 6
suggest that there might be a case where POPART makes a meaningful improvement over Lasso.

Proof of Theorem 1. Let λ ∶= maxi λi =
√

4(R2
0+σ2)H2(Q(µ))

n
log 2d

δ
From Proposition 1 and the

union bound, one can check that

∥θ′ − θ∗∥∞ < λ (3)

4

with probability 1 − δ. Therefore, the coordinates in supp(θ∗)c will be thresholded out because of
∥θ′ − θ∗∥∞ ≤ λ. Therefore, (ii) holds and for all i ∈ supp(θ∗)c, ∣θ̂i − θ∗i ∣ = 0.

By definition, θ̂ = clipλ(θ
′), we can say that ∥θ̂ − θ′∥∞ ≤ λ. Plus, by Eq. (3), ∥θ′ − θ∗∥∞ ≤ λ. By the

triangle inequality, ∥θ∗ − θ̂∥∞ ≤ 2λ. Therefore, (i) holds.

Lastly, (iii) can be argued as follows:

∥θ̂ − θ∗∥1 = ∑
i∈[d]
∣θ̂i − θ

∗
i ∣ ≤ ∑

i∈supp(θ∗)c
0 + ∑

i∈supp(θ∗)
2λ ≤ 2sλ.

WARM-POPART: Improved guarantee by warmup. One drawback of the POPART estimator is
that its estimation error scales with

√
R2

0 + σ
2, which can be very large when R0 is large. One may

attempt to use the fact that POPART allows a pilot estimator θ0 to address this issue since R0 gets
smaller as θ0 is closer to θ∗. However, it is a priori unclear how to obtain a θ0 close to θ∗ as θ∗ is the
unknown parameter that we wanted to estimate in the first place.

To get around this “chicken and egg” problem, we propose to introduce a warmup stage, which we
call WARM-POPART (Algorithm 2). WARM-POPART consists of two stages. For the first warmup
stage, the algorithm runs POPART with the zero vector as the pilot estimator and with the first half of
the samples to obtain a coarse estimator denoted by θ̂0 which guarantees that for large enough n0,
∥θ̂0 − θ

∗∥1 ≤ σ. In the second stage, using θ̂0 as the pilot estimator, it runs POPART on the remaining
half of the samples.

Algorithm 2 WARM-POPART

1: Input: Samples {(Xt, Yt)}
n0

t=1, the population covariance matrix Q ∈ Rd×d, an upper bound
Rmax of maxa∈A ∣⟨θ

∗, a⟩∣, number of samples n0, failure rate δ.
2: Output: θ̂, an estimate of θ∗

3: Run POPART({(Xi, Yi)}
⌊n0/2⌋
i=1 ,Q, 0⃗, δ,Rmax) to obtain θ̂0, a coarse estimate of θ∗ for the next

step.
4: Run POPART({(Xi, Yi)}

n0

i=⌊n0/2⌋+1,Q, θ̂0, δ, σ) to obtain θ̂, an estimate of θ∗.

The following corollary states the estimation error bound of the output estimator θ̂. Compared with
POPART’s ℓ1 recovery guarantee, WARM-POPART’s ℓ1 recovery guarantee (Equation (4)) has no
dependence on Rmax; its dependence on Rmax only appears in the lower bound requirement for n0.

Corollary 1. Take Assumption 1 without the condition onR0. Assume thatRmax ≥maxa∈A ∣⟨a, θ
∗⟩∣,

and n0 >
32s2(R2

max+σ
2)H2(Q(µ))

σ2 log 2d
δ

. Then, WARM-POPART has, with probability at least 1 − 2δ,

∥θ̂ − θ∗∥1 ≤ 8sσ

¿
Á
ÁÀH2(Q(µ)) ln 2d

δ

n0
. (4)

Remark 1. In Algorithm 2, we choose POPART as our coarse estimator, but we can freely change
the coarse estimation step (step 3) to other principled estimation methods (such as Lasso) without
affecting the main estimation error bound (4); the only change will be the lower bound requirement
of n0 to another problem-dependent constant.

Remark 2. WARM-POPART requires the knowledge of Rmax, an upper bound of maxa∈A ∣⟨θ
∗, a⟩∣;

this requirement can be relaxed by changing the last argument of the coarse estimation step (step 3)
from Rmax, to some function f(n0) such that f(n0) = ω(1) and f(n0) = o(

√
n0) (say, σn

1
4

0); with
this change, a result analogous to Corollary 1 can be proved with a different lower bound requirement
of n0.

A novel and efficient experimental design for sparse linear estimation. In the experimental
design setting where the learner has freedom to design the underlying sampling distribution µ, the
ℓ1 error bound of POPART and WARM-POPART naturally motivates a design criterion. Specifically,
we can choose µ that minimizes H2(Q(µ)), which gives the lowest estimation error guarantee. We
denote the optimal value of H2(Q(µ)) by

H2
∗ ∶= min

µ∈P(A)
max
i∈[d]
(Q(µ)−1)ii . (5)

5

The minimization of H2(Q(µ)) is a convex optimization problem, which admits efficient methods
for finding the solution. Intuitively, H2

∗ captures the geometry of the action set A.

To compare with previous studies that design a sampling distribution for Lasso, we first review the
standard ℓ1 error bound of Lasso.

Theorem 2. (Buhlmann and van de Geer [6, Theorem 6.1]) With probability at least 1 − 2δ, the
ℓ1-estimation error of the optimal Lasso solution θ̂Lasso [6, Eq. (2.2)] with λ =

√
2 log(2d/δ)/n

satisfies

∥θ̂Lasso − θ
∗
∥1 ≤

sσ

ϕ20(Σ̂, s)

√
2 log(2d/δ)

n
,

where ϕ0(Σ̂, s)2 is the compatibility constant with respect to the empirical covariance matrix Σ̂ =
1
n ∑

n
t=1XtX

⊺
t and the sparsity s in Eq. (2).

Ideally, for Lasso, experiment design which minimizes the compatibility constant will guarantee the
best estimation error bound within a fixed number of samples n. However, naively, the computation
of the compatibility constant is intractable since Eq. (2) is a combinatorial optimization problem
which is usually difficult to compute. One simple approach taken by Hao et al. [18] is to use the
following computationally tractable surrogate of ϕ20(Σ̂, s):

Cmin ∶= max
µ∈P(A)

λmin(Q(µ)) (6)

where λmin(A) denotes the minimum eigenvalue of a matrix A. With the choice of sampling
distribution µ = argmax

µ∈P(A)
λmin(Q(µ)), and n ≥ Ω̃(s⋅polylog(d)Cmin

2), with high probability, ϕ20(Σ̂, s) ≥

Cmin/2 holds [33, Theorem 1.8], and one can replace ϕ0(Σ̂, s) to Cmin/2 in Theorem 2 to get the
following corollary:

Corollary 2. With probability at least 1 − exp(−cn) − 2δ for some universal constant c, the ℓ1-
estimation error of the optimal Lasso solution θ̂Lasso satisfies

∥θ̂Lasso − θ
∗
∥1 ≤

2sσ

Cmin

√
2 log(2d/δ)

n
, (7)

The following proposition shows that our estimator has a better error bound compared to the surrogate
experimental design for Lasso of Hao et al. [18].

Proposition 2. We have H2
∗ ≤ C

−1
min ≤ dH

2
∗ . Furthermore, there exist arm sets for which either of the

inequalities is tight up to a constant factor.

Therefore, our new estimator has ℓ1 error guarantees at least a factor C−1/2min better than that provided
by [18], as follows: when we choose the µ as the solution of the Eq. (5), then

(RHS of (4)) ≲ sσH∗

√
ln(2d/δ)

n
≲ sσCmin

−1/2
√

ln(2d/δ)

n
≲ sσCmin

−1
√

ln(2d/δ)

n
≲ (RHS of (7))

In addition, we also prove that there exists a case where our estimator has an d/s-order better error
bound compared to the traditional lasso bound in Theorem 2, although this is not in terms of the
compatibility constant of the empirical covariance matrix Σ̂.

Proposition 3. There exists an action set A and an absolute constant C1 > 0 such that

H∗ < C1
s

d
×

1

ϕ20(Σ, s)

For the detailed proof about Proposition 2 and Proposition 3, see Section D in Appendix.

6

4 Improved Sparse Linear Bandits using WARM-POPART

We now apply our new WARM-POPART sparse estimation algorithm to design new sparse linear
bandit algorithms. Following prior work [18], we adopt the classical Explore-then-Commit (ETC)
framework for algorithm design, and use POPART with experimental design to perform exploration.
As we will see, the tighter ℓ1 estimation error bound of our POPART-based estimators helps us obtain
an improved regret bound.

Algorithm 3 Explore then commit with WARM-POPART

1: Input: time horizon n, action set A, warm-up exploration length n0, failure rate δ, reward
threshold parameter Rmax, an upper bound of maxa∈A ∣⟨θ

∗, a⟩∣.
2: Solve the optimization problem in Eq. (5) and denote the solution as µ∗
3: for t = 1, . . . , n0 do
4: Independently pull the arm At according to µ∗ and receives the reward rt
5: end for
6: Run WARM-POPART({At}

n0

t=1,{rt}
n0

t=1,Q(µ∗), δ,Rmax) to obtain θ̂, an estimate of θ∗.
7: for t = n0 + 1, . . . , n do
8: Take action At = arg maxa∈A ⟨θ̂, a⟩, receive reward rt = ⟨θ∗,At⟩ + ηt
9: end for

Sparse linear bandit with WARM-POPART. Our first new algorithm, Explore then Commit with
WARM-POPART (Algorithm 3), proceeds as follows. For the exploration stage, which consists of the
first n0 rounds, it solves the optimization problem (5) to find µ∗, the optimal sampling distribution
for POPART and samples from it to collect a dataset for the estimation of θ∗. Then, we use this
dataset to compute the WARM-POPART estimator θ̂. Finally, in the commit stage, which consists of
the remaining n − n0 rounds, we take the greedy action with respect to θ̂. We prove the following
regret guarantee of Algorithm 3:

Theorem 3. If Algorithm 3 has input time horizon n > 16
√
2
Rmax(R2

max+σ
2)3/2H2

∗
s2

σ4 log 2d
δ

, action

set A ⊂ [−1,+1]d, and exploration length n0 = 4(s2σ2H2
∗n

2 log 2d
δ
R−2max)

1
3 , λ1 = 4σ

√
H2
∗

n0
log 2d

δ
,

then with probability at least 1 − 2δ, Reg(n) ≤ 8R1/3
max(s

2σ2H2
∗n

2 log 2d
δ
)

1
3 .

Proof. From Corollary 1, ∥θ̂−θ∗∥1 ≤ 2sλ1 with probability at least 1−2δ. Therefore, with probability
1 − 2δ,

Reg(n) ≤ Rmaxn0 + (n − n0)∥θ̂ − θ
∗
∥1 ≤ Rmaxn0 + 2snλ1 = Rmaxn0 + 8snσ

√
H2
∗

n0
log

2d

δ

and optimizing the right hand side with respect to n0 leads to the desired upper bound.

Compared with Hao et al. [18]’s regret bound Õ((Rmaxs
2σ2Cmin

−2n2)1/3)1 , Algorithm 3’s regret
bound Õ((Rmaxs

2σ2H2
∗n

2)1/3) is at most Õ((Rmaxs
2σ2Cmin

−1n2)1/3), which is at least a factor
Cmin

1
3 smaller. As we will see in Section 5, we show that the regret upper bound provided by

Theorem 3 is unimprovable in general, answering an open question of [18].

Improved upper bound with minimum signal condition. Our second new algorithm, Algorithm 4,
similarly uses WARM-POPART under an additional minimum signal condition.

Assumption 2 (Minimum signal). There exists a known lower bound m > 0 such that
minj∈supp(θ∗) ∣θ

∗
j ∣ >m.

At a high level, Algorithm 4 uses the first n2 rounds for identifying the support of θ∗; the ℓ∞ recovery
guarantee of WARM-POPART makes it suitable for this task. Under the minimal signal condition and
a large enough n2, it is guaranteed that θ̂2’s support equals exactly the support of θ∗. After identifying
the support of θ∗, Algorithm 4 treats this as a s-dimensional linear bandit problem by discarding

1This is implicit in [18] – they assume that σ = 1 and do not keep track of the dependence on σ.

7

the remaining d − s coordinates of the arm covariates, and perform phase elimination algorithm [23,
Section 22.1] therein. The following theorem provides a regret upper bound of Algorithm 4.

Algorithm 4 Restricted phase elimination with WARM-POPART

1: Input: time horizon n, finite action set A, minimum signal m, failure rate δ, reward threshold
parameter Rmax, an upper bound of maxa∈A ∣⟨θ

∗, a⟩∣
2: Solve the optimization problem in Eq. 5 and denote the solutions as Q and µ∗, respectively.
3: Let n2 =max(

256σ2H2
∗

m2 log 2d
δ
,
32s2(R2

max+σ
2)H2

∗

σ2 log 2d
δ
)

4: for t = 1, . . . , n2 do
5: Independently pull the arm At according to µ∗ and receives the reward rt
6: end for
7: θ̂2 =WARM-POPART({At}

n
t=1,{Rt}

n
t=1,Q, δ,Rmax)

8: Identify the support Ŝ = supp(θ̂2)
9: for t = n2 + 1, . . . , n do

10: Invoke phased elimination algorithm for linear bandits on Ŝ
11: end for

Theorem 4. If Algorithm 4 has input time horizon n > max(
28σ2H2

∗

m2 ,
25s2(R2

max+σ
2)H2

∗

σ2) log 2d
δ

,
action set A ⊂ [−1,1]d, upper bound of the reward Rmax, then with probability at least 1 − 2δ, the
following regret upper bound of the Algorithm 4 holds: for universal constant C > 0,

Reg(n) ≤max(
28σ2H2

∗
m2

log
2d

δ
,
25s2(R2

max + σ
2)H2

∗
σ2

log
2d

δ
) +Cσ

√
sn log(∣A∣n)

For sufficiently large n, the second term dominates, and we obtain an O(
√
sn) regret upper bound.

Theorem 4 provides two major improvements compared to Hao et al. [18, Algorithm 2]. First,
when m is moderately small (so that the first subterm in the first term dominates), it shortens the
length of the exploration phase n2 by a factor of s ⋅ Cmin

H2
∗

. Second, compared with the regret bound

Õ(

√
9λmax(∑n2

i=1 AiA
⊺

i /n2)
Cmin

√
sn) provided by [18], our main regret term Õ(

√
sn) is more interpretable

and can be much lower.

5 Matching lower bound

We show the following theorem that establishes the optimality of Algorithm 3. This solves the open
problem of Hao et al. [18, Remark 4.5] on the optimal order of regret in terms of sparsity and action
set geometry in sparse linear bandits.

Theorem 5. For any algorithm, any s, d, κ that satisfies d ≥ max(n1/3s4/3κ−4/3, (s + 1)2) and
n > 8κs2, there exists a linear bandit environment an action set A and a s-sparse θ ∈ Rd, such that
C−1min ≤ κ

−2, Rmax ≤ 2, σ = 1, and

Regn ≥ Ω(κ
−2/3s2/3n2/3) .

We give an overview of our lower bound proof techniques, and defer the details to Appendix F.

Change of measure technique. Generally, researchers prove the lower bound by comparing two
instances based on the information theory inequalities, such as Pinsker’s inequality, or Bregtanolle-
Huber inequality. In this proof, we also use two instances θ and θ′, but we use the change of measure
technique, to help lower bound the probability of events more freely. Specifically, for any event A,

Pθ(A) = Eθ[1A] = Eθ′

⎡
⎢
⎢
⎢
⎣
1A

n

∏
t=1

pθ(rt∣at)

pθ′(rt∣at)

⎤
⎥
⎥
⎥
⎦
≳ Eθ′

⎡
⎢
⎢
⎢
⎢
⎣

1A exp
⎛

⎝
−

n

∑
t=1
⟨At, θ − θ

′
⟩
2⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

. (8)

Symmetrization. We utilize the algorithmic symmetrization technique of Simchowitz et al. [34],
Stoltz et al. [37], which makes it suffice to focus on proving lower bounds against symmetric
algorithms.

8

Definition 2 (Symmetric Algorithm). An algorithm Alg is symmetric if for any permutation π ∈
Sym(d), θ ∈ Rd, {at}nt=1 ∈ A

n,

Pθ,Alg(A1 = a1,⋯,An = an) = Pπ(θ),Alg(A1 = π(a1),⋯,An = π(an))

where for vector v, π(v) ∈ Rd denotes its permuted version that moves vi to the π(i)-th position.

This approach can help us to exploit the symmetry of θ′ to lower bound the right hand side of (8);
below, Π ∶= {π′ ∶ π(θ′) = θ′} is the set of permutations that keep θ′ invariant, and A is an event
invariant under Π:

(8) ≥
1

∣Π∣
∑
π∈Π

Eθ′

⎡
⎢
⎢
⎢
⎣
1A exp(−

n

∑
t=1
⟨π−1(At), θ − θ

′
⟩
2
)
⎤
⎥
⎥
⎥
⎦
≥ Eθ′

⎡
⎢
⎢
⎢
⎢
⎣

1A exp
⎛

⎝
−

n

∑
t=1

1

∣Π∣
∑
π∈Π
⟨π−1(At), θ − θ

′
⟩
2⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

which helps us use combinatorial tools over the actions for the lower bound proof.

6 Experimental results

We evaluate the empirical performance of POPART and our proposed experimental design, along
with its impact on sparse linear bandits. One can check our code from here: https://github.com/
jajajang/sparse.

Case 1 Case 2

Figure 1: Experiment results on ℓ1 estimation error cumulative regret.

For sparse linear regression and experimental design, we compare our algorithm POPART with
µ being the solution of (5) with two baselines. The first baseline denoted by Cmin-Lasso is the
method proposed by Hao et al. [18] that uses Lasso with sampling distribution µ defined by (6).
The second baseline is H2-Lasso, uses Lasso with sampling distribution µ defined by (5), which is
meant to observe if Lasso can perform better with our experimental design and to see how POPART is
compared with Lasso as an estimator since they are given the same data. Of course, this experimental
design is favored towards POPART as we have optimized the design for it, so our intention is to
observe if there ever exists a case where POPART works better than Lasso.

For sparse linear bandits, we run a variant of our Algorithm 3 that uses WARM-POPART in place of
POPART for simplicity. As a baseline, we use ESTC [18]. For both methods, we use the exploration
length prescribed by theory. We consider two cases:

9

https://github.com/jajajang/sparse
https://github.com/jajajang/sparse

• Case 1: Hard instance where H2
∗ ≪ C

−1
min. We use the action set constructed in Appendix D.1

where H2
∗ and Cmin shows a gap of Θ(d). We choose d = 10, s = 2, σ = 0.1.

• Case 2. General unit vectors. In this case, we choose d = 30, s = 2, σ = 0.1 and the action set
A consists of ∣A∣ = 3d = 90 uniformly random vectors on the unit sphere.

We run each method 30 times and report the average and standard deviation of the ℓ1 estimation error
and the cumulative regret in Figure 1.

Observation. As we expected from the theoretical analysis, our estimator and bandit algorithm
outperform the baselines. In terms of the ℓ1 error, for both cases, we see that POPART converges
much faster than Cmin-Lasso for large enough n. Interestingly, H2-Lasso also improves by just using
the design computed for POPART in case 1. At the same time, H2-Lasso is inferior than POPART
even if they are given the same data points. While the design was optimized for POPART and POPART
has the benefit of using the population covariance, which is unfair, it is still interesting to observe
a significant gap between POPART and Lasso. For sparse linear bandit experiments, while ESTC
requires exploration time almost the total length of the time horizon, ours requires a significantly
shorter exploration phase in both cases and thus suffers much lower regret.

7 Conclusion
We have proposed a novel estimator POPART and experimental design for high-dimensional linear
regression. POPART has not only enabled accurate estimation with computational efficiency but also
led to improved sparse linear bandit algorithms. Furthermore, we have closed the gap between the
lower and upper regret bound on an important family of instances in the data-poor regime.

Our work opens up numerous future directions. For POPART, we speculate that (Q(µ)−1)ii is the
statistical limit for testing whether θ∗i = 0 or not – it would be a valuable investigation to prove
or disprove this. We believe this will also help investigate whether the dependence on H2

∗ in our
regret upper bound is unimprovable (note our matching lower bound is only for a particular family of
instances). Furthermore, it would be interesting to investigate whether we can use POPART without
relying on the population covariance; e.g., use estimated covariance from an extra set of unlabeled
data or find ways to use the empirical covariance directly. For sparse linear bandits, it would be
interesting to develop an algorithm that achieves the data-poor regime optimal regret and data-rich
regime optimal regret

√
sdn simultaneously. Furthermore, it would be interesting to extend our result

to changing arm set, which poses a great challenge in planning.

Acknowledgments and Disclosure of Funding

We thank Ning Hao for helpful discussions on theoretical guarantees of Lasso. Kwang-Sung Jun is
supported by Data Science Academy and Research Innovation & Impact at University of Arizona.

References
[1] Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári. Improved algorithms for linear stochastic bandits.

Advances in neural information processing systems, 24, 2011.

[2] Y. Abbasi-Yadkori, D. Pal, and C. Szepesvari. Online-to-Confidence-Set Conversions and
Application to Sparse Stochastic Bandits. In Proceedings of the International Conference on
Artificial Intelligence and Statistics (AISTATS), 2012.

[3] N. Abe and P. M. Long. Associative reinforcement learning using linear probabilistic concepts.
In Proceedings of the International Conference on Machine Learning (ICML), pages 3–11,
1999.

[4] P. Auer and M. Long. Using Confidence Bounds for Exploitation-Exploration Trade-offs.
Journal of Machine Learning Research, 3:2002, 2002.

[5] H. Bastani and M. Bayati. Online decision making with high-dimensional covariates. Operations
Research, 68(1):276–294, 2020.

[6] P. Buhlmann and S. van de Geer. Statistics for High-Dimensional Data: Methods, Theory and
Applications. Springer Publishing Company, Incorporated, 1st edition, 2011. ISBN 3642201911.

10

[7] R. Camilleri, K. Jamieson, and J. Katz-Samuels. High-dimensional experimental design and
kernel bandits. In International Conference on Machine Learning, pages 1227–1237. PMLR,
2021.

[8] A. Carpentier and R. Munos. Bandit theory meets compressed sensing for high dimensional
stochastic linear bandit. In Artificial Intelligence and Statistics, pages 190–198. PMLR, 2012.

[9] O. Catoni. Challenging the empirical mean and empirical variance: a deviation study. In
Annales de l’IHP Probabilités et statistiques, volume 48, pages 1148–1185, 2012.

[10] V. Chernozhukov, M. Demirer, G. Lewis, and V. Syrgkanis. Semi-parametric efficient policy
learning with continuous actions. Advances in Neural Information Processing Systems, 32,
2019.

[11] V. Dani, T. P. Hayes, and S. M. Kakade. Stochastic Linear Optimization under Bandit Feedback.
In Proceedings of the Conference on Learning Theory (COLT), pages 355–366, 2008.

[12] M. Dudík, J. Langford, and L. Li. Doubly robust policy evaluation and learning. In ICML, 2011.

[13] H. Eftekhari, M. Banerjee, and Y. Ritov. Design of c-optimal experiments for high dimensional
linear models. arXiv preprint arXiv:2010.12580, 2020.

[14] V. V. Fedorov. Theory of optimal experiments. Elsevier, 2013.

[15] T. Fiez, L. Jain, K. G. Jamieson, and L. Ratliff. Sequential experimental design for transductive
linear bandits. Advances in neural information processing systems, 32, 2019.

[16] D. P. Foster and E. I. George. The risk inflation criterion for multiple regression. The Annals of
Statistics, 22(4):1947–1975, 1994.

[17] A. Gilbert and P. Indyk. Sparse recovery using sparse matrices. Proceedings of the IEEE, 98(6):
937–947, 2010.

[18] B. Hao, T. Lattimore, and M. Wang. High-dimensional sparse linear bandits. Advances in
Neural Information Processing Systems, 33:10753–10763, 2020.

[19] T. Hastie, R. Tibshirani, and M. Wainwright. Statistical learning with sparsity. Monographs on
statistics and applied probability, 143:143, 2015.

[20] Y. Huang, X. Kong, and M. Ai. Optimal designs in sparse linear models. Metrika, 83(2):
255–273, 2020.

[21] A. Javanmard and A. Montanari. Confidence intervals and hypothesis testing for high-
dimensional regression. The Journal of Machine Learning Research, 15(1):2869–2909, 2014.

[22] G.-S. Kim and M. C. Paik. Doubly-Robust Lasso Bandit. In Advances in Neural Information
Processing Systems (NeurIPS), volume 32, 2019.

[23] T. Lattimore and C. Szepesvári. Bandit Algorithms. 2018. URL http://downloads.
tor-lattimore.com/book.pdf.

[24] T. Lattimore, K. Crammer, and C. Szepesvári. Linear multi-resource allocation with semi-bandit
feedback. Advances in Neural Information Processing Systems, 28, 2015.

[25] L. Li, W. Chu, J. Langford, and R. E. Schapire. A Contextual-Bandit Approach to Personalized
News Article Recommendation. Proceedings of the International Conference on World Wide
Web (WWW), pages 661–670, 2010.

[26] P. Liao, P. Klasnja, A. Tewari, and S. A. Murphy. Sample size calculations for micro-randomized
trials in mhealth. Statistics in medicine, 35(12):1944–1971, 2016.

[27] G. Lugosi and S. Mendelson. Mean estimation and regression under heavy-tailed distributions:
A survey. Foundations of Computational Mathematics, 19(5):1145–1190, 2019.

[28] B. Mason, R. Camilleri, S. Mukherjee, K. Jamieson, R. Nowak, and L. Jain. Nearly optimal
algorithms for level set estimation. arXiv preprint arXiv:2111.01768, 2021.

11

http://downloads.tor-lattimore.com/book.pdf
http://downloads.tor-lattimore.com/book.pdf

[29] M.-h. Oh, G. Iyengar, and A. Zeevi. Sparsity-agnostic lasso bandit. In International Conference
on Machine Learning, pages 8271–8280. PMLR, 2021.

[30] S. Ramaswamy, P. Tamayo, R. Rifkin, S. Mukherjee, C.-H. Yeang, M. Angelo, C. Ladd,
M. Reich, E. Latulippe, J. P. Mesirov, et al. Multiclass cancer diagnosis using tumor gene
expression signatures. Proceedings of the National Academy of Sciences, 98(26):15149–15154,
2001.

[31] S. N. Ravi, V. Ithapu, S. Johnson, and V. Singh. Experimental design on a budget for sparse
linear models and applications. In International Conference on Machine Learning, pages
583–592. PMLR, 2016.

[32] H. Robbins. A remark on stirling’s formula. The American mathematical monthly, 62(1):26–29,
1955.

[33] M. Rudelson and S. Zhou. Reconstruction from anisotropic random measurements. In Confer-
ence on Learning Theory, pages 10–1. JMLR Workshop and Conference Proceedings, 2012.

[34] M. Simchowitz, K. Jamieson, and B. Recht. The simulator: Understanding adaptive sampling in
the moderate-confidence regime. In Conference on Learning Theory, pages 1794–1834. PMLR,
2017.

[35] V. Sivakumar, S. Wu, and A. Banerjee. Structured linear contextual bandits: A sharp and
geometric smoothed analysis. In International Conference on Machine Learning, pages 9026–
9035. PMLR, 2020.

[36] M. Soare, A. Lazaric, and R. Munos. Best-arm identification in linear bandits. Advances in
Neural Information Processing Systems, 27, 2014.

[37] G. Stoltz, S. Bubeck, and R. Munos. Pure exploration in finitely-armed and continuous-
armed bandits. Theoretical Computer Science, 412(19):1832–1852, apr 2011. URL https:
//hal-hec.archives-ouvertes.fr/hal-00609550.

[38] C. Tao, S. Blanco, and Y. Zhou. Best arm identification in linear bandits with linear dimension
dependency. In International Conference on Machine Learning, pages 4877–4886. PMLR,
2018.

[39] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society: Series B (Methodological), 58(1):267–288, 1996.

[40] S. A. van de Geer. On tight bounds for the lasso. J. Mach. Learn. Res., 19:46:1–46:48, 2018.

[41] M. Woodroofe. A one-armed bandit problem with a concomitant variable. Journal of the
American Statistical Association, 74(368):799–806, 1979.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section 6.
• Did you include the license to the code and datasets? [No] The code and the data are proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]

12

https://hal-hec.archives-ouvertes.fr/hal-00609550
https://hal-hec.archives-ouvertes.fr/hal-00609550

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [No] We are not

aware of any negative impacts.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?

[Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were

chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experiments

multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type of

GPUs, internal cluster, or cloud provider)? [No] But it was run on a 5-year-old laptop and
no significant computation was required.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [No]
(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [No]

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(IRB) approvals, if applicable? [No]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent
on participant compensation? [No]

13

Appendix

Table of Contents
A Related work 14

B Catoni’s Estimator 15

C Proofs for POPART and WARM-POPART 15
C.1 Proof for Proposition 1 . 15
C.2 Full version of Corollary 1 and its proof . 16

D Proof of Proposition 2 and Proposition 3 16
D.1 The case of when the equality in Eq. (9 holds . 16

E Proofs for Sparse Linear Bandits 19
E.1 Proof of Theorem 4 . 19

F Proof of Lower Bound 19
F.1 Algorithmic symmetrization: reducing lower bounds for general algorithms to

symmetric algorithms . 20
F.2 Lower bound against symmetric algorithms . 24

G Experiment details 37

A Related work

Sparse linear bandits. The sparse linear bandit problem is a natural extension of sparse linear
regression to the bandit setup where the goal is to enjoy low regret in the high-dimensional setting by
levering the sparsity of the unknown parameter θ∗. The first study we are aware of is Abbasi-Yadkori
et al. [2] that achieves a Õ(

√
sdn) regret bound with a computationally intractable method, which is

later shown to be optimal by Lattimore and Szepesvári [23, Section 24] yet is not computationally
efficient. Since then, several approaches have been proposed. A large body of literature either assumes
that the arm set is restricted to a continuous set (e.g., a norm ball) [8, 24] or that the set of available
arms at every round is drawn in a time-varying manner, and playing arms greedily still induces a ‘nice’
arm distribution such as satisfying compatibility or restricted eigenvalue conditions [5, 22, 35, 29].
These assumptions allow them to leverage existing theoretical guarantees of Lasso. In contrast,
we follow Hao et al. [18] and consider arm sets that are fixed throughout the bandit game without
making further assumptions about the arm set. While this setup is interesting in its own for not having
restrictive assumptions, it is also an important stepping stone towards efficient bandit algorithms for
the more generic yet challenging setup of changing arm sets without any distributional assumptions.
Our work is a direct improvement over Hao et al. [18], in that we close the gap between upper and
lower bounds on the optimal worst-case regret; we refer to Table 1 for a detailed comparison.

Sparse linear regression. Natural attempts for solving sparse linear bandits are to turn to existing
results from sparse linear regression. While best subset selection (BSS) is a straightforward approach
of trying all the possible sparsity patterns that achieves good guarantees, its computational complexity
is prohibitive [16]. As a computationally efficient alternative, Lasso is arguably the most popular
approach for sparse linear regression for its simplicity and effectiveness [39]. However, Lasso has an
inferior ℓ1 norm error bound than BSS, perhaps due to its bias [40]. Rather than turning to existing
results from sparse linear regression, we propose a novel estimator, POPART, by leveraging the fact
that the setup allows us to design the sampling distribution, which allows a better ℓ1 norm error bound
than Lasso except for the dependence on the range of the mean response variable.

14

Experimental design. In the linear bandit field, researchers often use experimental design to get the
best estimator within the limited budget [36, 38, 7, 15, 28]. Especially, there were a few attempts
using the population covariance based estimator instead of the traditional empirical covariance matrix
[28, 38]. However, our study is the first approach that designs the experiment for minimizing the
variance of each coordinate of the estimator uniformly, to the best of our knowledge.

For experimental design for sparse linear regression, Ravi et al. [31] propose heuristic approaches
that ensures the design distribution satisfy incoherence conditions and restricted isometry property
(RIP). Eftekhari et al. [13] study the design of c-optimal experiments in sparse regression models,
where the goal is to estimate ⟨c, θ∗⟩ with low error for some c ∈ Rd; our experimental design task
can be seen as simultaneously estimating ⟨c, θ∗⟩ for all c = e1, . . . , ed. Huang et al. [20] propose
algorithms for optimal experimental design, tailored to minimizing the asymptotic variance of the
debiased Lasso estimator [21]. In contrast, our results are based on finite-sample analyses.

In the theoretical computer science literature, a line of work on sketching also provides provably
compressed sensing and sparse recovery algorithms [See 17, for an overview]; however, they mostly
focus on using measurements (covariates) that are in {0,1}d and {−1,1}d, as opposed to general
measurement sets in Rd.

Regression with the population covariance matrix. There are a few studies that consider regression
with the population covariance matrix: Camilleri et al. [7] devise the novel scheme for the experimen-
tal design for the kernel bandits and obtain a new estimator called RIPS that leverages the population
covariance matrix and robust mean estimator like POPART. Mason et al. [28] solve the level set
estimation problem using RIPS. Tao et al. [38] also employ a similar estimator, but they do not use
robust mean estimators and result in a weaker form of error bound involving additional lower order
terms. The main difference of our work from all these papers is that they do not address sparse linear
models. In particular, they do not perform thresholding nor provide l∞ or l1 recovery guarantees for
the sparse parameter.

B Catoni’s Estimator

Definition 3 (Catoni’s estimator [9]). For the i.i.d random variables Z1,⋯, Zn, Catoni’s mean
estimator Catoni({Zi}

n
i=1, δ, α) with error rate δ and the weight parameter α is defined as the unique

value y which satisfies
n

∑
i=1
ψ(α(Zn − y)) = 0

where ψ(x) ∶= sign(x) log(1 + ∣x∣ + x2/2).

Lemma 1 (Catoni’s estimator guarantee [9]). For the i.i.d random variable X1,⋯,Xn with
mean µ, let µ̂ be their Catoni’s estimator with error rate δ with the weight parameter α ∶=
¿
Á
ÁÀ

2 log 1
δ

nVar(X1)(1+
2 log 1

δ
n−2 log 1

δ

)
. Then with probability at least 1 − 2δ, the following inequality holds:

∣µ̂ − µ∣ <

¿
Á
ÁÀ2Var(X1) log

1
δ

n − log 1
δ

C Proofs for POPART and WARM-POPART

C.1 Proof for Proposition 1

Proof. To lighten the notation, in this proof, we write Q = Q(µ), and let (θ̃,A, η) denote random
vectors distributed identically to (θ̃1,A1, η1). First, observe that E [θ̃] = θ∗. We now use the law of

total variance to decompose the covariance matrix of θ̃, by first conditioning on X:

E [(θ̃ − θ∗)(θ̃ − θ∗)⊺] =E [(E[θ̃ ∣X] − θ∗)(E[θ̃ ∣X] − θ∗)⊺] +E [(θ̃ −E[θ̃ ∣X])(θ̃ −E[θ̃ ∣X])⊺]

15

For the first term,

E [(E[θ̃ ∣X] − θ∗)(E[θ̃ ∣X] − θ∗)⊺] = E [(E[θ̃ ∣X] − θ0)(E[θ̃ ∣X] − θ0)⊺] − (θ∗ − θ0)(θ∗ − θ0)⊺

⪯E [(E[θ̃ ∣X] − θ0)(E[θ̃ ∣X] − θ0)⊺]

=E [Q−1X(X⊺(θ∗ − θ0))2X⊺Q−1]

⪯R2
0 E [Q

−1XX⊺Q−1] = R2
0Q
−1

For the second term,

E [(θ̃ −E[θ̃ ∣X])(θ̃ −E[θ̃ ∣X])⊺] = E[Q−1XX⊺Q−1η2] = σ2Q−1.

Combining the above two bounds, we have Var(θ̃) = E [(θ̃ − θ∗)(θ̃ − θ∗)⊺] ⪯ (R2
0 + σ

2)Q−1. There-

fore, we can bound Var(θ̃i) as follows:

Var(θ̃i) = E[(e⊺i (θ̃ − θ
∗
))

2
] ≤ (R2

0 + σ
2
)(Q−1)ii

By the theoretical guarantee of the Catoni’s estimator (Lemma 1 in the Appendix), the desired
inequality holds.

C.2 Full version of Corollary 1 and its proof

Corollary 3. If WARM-POPART receives inputs {Xt, Yt}
n0

t=1 drawn from µ,Q(µ), failure probability

δ, and Rmax such that Rmax ≥ maxa∈A ∣⟨a, θ
∗⟩∣, and n0 >

32s2(R2
max+σ

2)H2(Q(µ))
σ2 log 2d

δ
, then all

the following items hold with probability at least 1 − 2δ:

(i) ∥θ̂ − θ∗∥∞ ≤ 8σH(Q)
√

ln 2d
δ

n0

(ii) supp(θ̂) ⊂ supp(θ∗) so ∥θ̂ − θ∗∥0 ≤ s

(iii) ∥θ̂ − θ∗∥1 ≤ 8sσH(Q)
√

ln 2d
δ

n0

Proof. Since n0 is sufficiently large, from the Theorem 1 withR0 = Rmax we can say that ∥θ0−θ∗∥1 ≤
σ. Applying Theorem 1 again with R0 = σ we can get all (i), (ii), (iii) directly.

D Proof of Proposition 2 and Proposition 3

First, we will prove H2
∗ ≤ C

−1
min ≤ dH

2
∗ . We will deal with equality in the next subsection.

Proof. For any positive definite matrix Q ∈ Rd×d,

H2
(Q) =max

i∈[d]
(Q−1)ii =max

i∈[d]
e⊺iQ

−1ei ≤ max
v∈Sd−1

v⊺Q−1v = λmax(Q(π)
−1
) ≤ tr(Q(π)−1) ≤ dH2

(Q)

(9)

Now, let the solution of the Eq. (5) and Eq. (6) as µH and µC , respectively. Then, by the rightmost
inequality of (9) we have

1

Cmin
≤ λmax(Q(µH)

−1
) ≤ dH2

∗

and by the leftmost inequality of the (9) we have

H2
∗ ≤H

2
(Q(µC)) ≤

1

Cmin

Therefore, the inequality part of the Proposition 2 holds.

D.1 The case of when the equality in Eq. (9 holds

For an example of H2
∗ = C

−1
min, consider A = {ei∣i = 1,⋯, d}; it can be seen that H2

∗ = C
−1
min = d.

16

We now present an example where Cmin = Θ(dH
2
∗).

Consider A = {a1, . . . , ad}, where

a1 =
1
√
d
e1

ai =e1 +
1
√
d
ei.

and we will calculateH2(Q(π)) and λmin(Q(π)) for the optimal sampling distributions π to achieve
H2
∗ and Cmin, respectively.

D.1.1 Prove that the optimal π satisfies π(a2) = π(a3) = ⋯ = π(ad)

We will first show that for both objectives H2(Q(π)) and λmin(Q(π)), there exists an optimal
sampling distribution π such that π(a2) = π(a3) = ⋯ = π(ad).

Denote by a ∶= π(a1). Fix a. For notational convenience, let π(ai) ∶= bi and b = (b2, b3,⋯, bd) ∈
Rd−1. Then the covariance matrix Q(π) (abbreviated as Q) has the following form:

Q =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a
d
+∑ bi

b2√
d

⋯
bd√
d

b2√
d

⋮ 1
d
Diag(b)

bd√
d

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(10)

After some calculation, one can get the determinant

det(Q) =
a(Πd

i=2bi)

dd

and the cofactor

Cii =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(
Πd

i=1bi
dd−1) if i = 1

(a
d
+ bi)(

Πd
s=2bs

bidd−2) if i = 2,⋯, d

and therefore

(Q−1)ii =
⎧⎪⎪
⎨
⎪⎪⎩

(d
a
) if i = 1

(a
d
+ bi)d

2/(abi) if i = 2,⋯, d

When a is a fixed parameter, (Q−1)ii = d2

a
+ d

bi
and therefore the argmaxi(Q

−1)ii = argmin bi.
Under the constraint ∑d

i=2 bi = 1 − a, the optimal solution is reached when b2 = b3 = ⋯ = bd.

For the Cmin case, we will utilize symmetry of λmin(Q(π)). Note that λmin(Q) is a concave
function w.r.t Q. Suppose that the (b′2, b

′
3,⋯, b

′
d) = argbmaxλmin(Q(b)). Then from the symmetry,

for any cyclic permutation P , all (b′P i(2), b
′
P i(3),⋯, b

′
P i(d)) i = 1,⋯, d − 1 are also the maximum.

Therefore, by the Jensen’s inequality,

Cmin =
1

d

d−1
∑
i=0

λmin(a, b
′
P i(2), b

′
P i(3),⋯, b

′
P i(d)) ≤ λmin(a,

1 − a

d − 1
,
1 − a

d − 1
,⋯,

1 − a

d − 1
) ≤ Cmin

Therefore, we can conclude b2 = b3 = ⋯ = bd = 1−a
d−1 is indeed an optimal choice when a is fixed.

From now on, consider only the strategy π that satisfies π(a2) = π(a3) = ⋯ = π(ad) for this section,
and let a = π(a1) and b = π(a2). Then a + (d − 1)b = 1. Now the covariance matrix induced by π is

17

of the following form:

Q =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a
d
+ (d − 1)b b√

d
⋯ b√

d
b√
d

⋮ b
d
Id−1

b√
d

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(11)

D.1.2 Calculating H2
∗

One can calculate det(Q) = a
d
(b
d
)d−1 (using again the cofactor method) and the cofactor

Cii =

⎧⎪⎪
⎨
⎪⎪⎩

(b
d
)d−1 if i = 1

(a
d
+ b)(b

d
)d−2 otherwise

and therefore

(Q−1)ii =
⎧⎪⎪
⎨
⎪⎪⎩

(d
a
) if i = 1

(a
d
+ b)d2/(ab) otherwise

(Q−1)ii is always larger than (Q−1)11, and by taking derivatives, the b that minimizes the (Q−1)22 is
√

d
d−1 − 1 = 1√

d−1(
√
d+
√
d−1) , and the corresponding (Q−1)22 = d(

√
d +
√
d − 1)2 = Θ(d2). In this

case, a = d −
√
d(d − 1) (close to 1/2).

D.1.3 Calculating Cmin

The eigenspectrum of Q is

λ1, λ2 =
[1
d
+
(d2−2d+2)b

d
] ±

√

[1
d
+
(d2−2d+2)b

d
]2 −

4b−4(d−1)b2
d2

2

λ3 = λ4 = ⋯ = λd =
b

d

Therefore, 1
λmin

=max(d
b
, d
2b
(
1+(d2−2d+2)b+

√
(1+(d2−2d+2)b)2−4b+4(d−1)b2

1−(d−1)b)).

Note that for the optimal π, a > 0; otherwise Q(π) is not invertible. Therefore, b = 1−a
d−1 <

1
d−1 . Hence, one can check that

√
(1 + (d2 − 2d + 2)b)2 − 4b + 4(d − 1)b2 ≥ 1, so 1

λmin
=

d
2b
(
1+(d2−2d+2)b+

√
(1+(d2−2d+2)b)2−4b+4(d−1)b2

1−(d−1)b). Now we investigate argminb
1

λmin(b) .

Recall that a + (d − 1)b = 1, b < 1/(d − 1). Thus, −4b + 4(d − 1)b2 < 0. Therefore, the big square
root term is smaller than (1 + (d2 − 2d + 2)b), which means if we let f(b) = d(1+(d2−2d+2)b)

2b(1−(d−1)b) , then

f(b) ≤
1

λmin(b)
≤ 2f(b)

It remains to calculate minb f(b). A few derivative calculations show that b∗ = argminb f(b) =
−(d−1)+

√
d3−1

d3−1−(d−1)2 = Θ(d
−3/2) and minb f(b) = Θ(d

3).

D.1.4 Lower bound of 1
ϕ2
0(Q(π),s)

It is difficult to directly calculate the compatibility constant of Q(π), but we can bound it using the
diagonal entries of Q(π). Note that

ϕ2 = min
S⊂[d]

min
v∈CS

sv⊺Qv

∥vS∥21
≤ s min

v∈{ei}di=1

v⊺Qv

1
= smin

i∈[d]
(Qii)

18

and therefore 1
ϕ2 ≥

1
mini∈[d] sQii

.

We will use the notation in D.1.1.

Denote by a ∶= π(a1). For notational convenience, let π(ai) ∶= bi and b = (b2, b3,⋯, bd) ∈ Rd−1.
Then the covariance matrix Q(π) (abbreviated as Q) has the following form:

Q =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a
d
+∑ bi

b2√
d

⋯
bd√
d

b2√
d

⋮ 1
d
Diag(b)

bd√
d

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(12)

From the basic constraint a + ∑d
i=2 bi = 1, mini∈[d]Qii = mini∈{2,⋯,d}

bi
d
= O(1

d2). Therefore
1
ϕ2 = Ω(d2/s). This means even for the best case of the compatibility constant cannot beat the
recovery bound of POPART in this action set.

E Proofs for Sparse Linear Bandits

E.1 Proof of Theorem 4

Proof. From the (i) in Corollary 3, when n2 =
256σ2H2

∗

m2 log d
δ

, with probability at least 1 − 2δ,

∥θ̂ − θ∗∥∞ < 8σ

√
H2
∗

n2
log

2d

δ
=
m

2

Therefore, with probability at least 1 − 2δ, for any index i ∈ supp(θ∗)C , θ̂i = 0, and for any index
j ∈ supp(θ∗), ∣θ̂j ∣ > ∣θ∗j ∣ −

m
2
> 0. Thus, supp(θ∗) = supp(θ̂) with probability at least 1 − 2δ. After

that, we use the following result about the restricted phase retrieval [23]:

Theorem 6. (Lattimore and Szepesvári [23], Theorem 22.1) The n-steps regret of phase elimination
algorithm satisfies

Regn ≤ Cσ
√
nd log(∣A∣n)

for an appropriately chosen universal constant C > 0.

F Proof of Lower Bound

In this section, we prove Theorem 5. We start with a restatement of it.

Theorem 7. (Restatement of the Theorem 5) For any algorithm, any s, d, κ that satisfies s > 80, κ ∈
(0,1), d ≥max(n1/3s4/3κ−4/3, (s + 1)2), n > 8κs2, there exists a linear bandit environment with an
action set A and a s-sparse θ ∈ Rd, such that Cmin(A)

−1 ≤ κ−2, Rmax ≤ 2, σ = 1, and

Regn ≥ Ω(κ
−2/3s2/3n2/3) .

In the lower bound instance that establishes Theorem 7, we will prove that 2κ−2 ≥ C−1min ≥H
2
∗ (see

Section F.2.7), and conclude that our Õ(H2/3
∗ s2/3n2/3) regret upper bound of Algorithm 3 has a

matching lower bound and conclude that the algorithm and the lower bound are both optimal in this
setting.

For convenience, throughout the rest of this section, we prove the following slight variant of Theo-
rem 7, where the dimensonality is d + 1 as opposed to d, and the sparsity is 2s + 1 as opposed to s;
note that the changes of these parameters do not affect the orders of the regret bounds in terms of
them.

Theorem 8. For any algorithm, any s, d, κ that satisfies s > 40 and is a multiple of 4, κ ∈ (0,1), d ≥
max(n1/3s4/3κ−4/3, (s + 1)2), n > 8κs2, there exists a linear bandit environment an action set A

19

and a (2s + 1)-sparse θ ∈ Rd+1, such that Cmin(A)
−1 ≤ 2κ−2, Rmax ≤ 2, σ = 1, and

Regn ≥ Ω(κ
−2/3s2/3n2/3) .

Construction Following the standard minimax lower bound and hypothesis testing terminology, we
will often refer to an underlying reward predictor θ ∈ Rd+1 as a hypothesis. Let

Θs = {θ ∈ Rd+1
∣θi ∈ {−ϵ,0, ϵ} for i ∈ [d], θd+1 = −1, ∥θ∥0 = s + 1},

where ϵ = κ−2/3s−1/3n−1/3. We will use Θs and Θ2s as our hypothesis space throughout the proof.

We construct a low-regret action set I and an informative action setH as follows:

I = {x ∈ Rd+1
∣xj ∈ {−1,0,1} for j ∈ [d], ∥x∥1 = 2s, xd+1 = 0}

H = {x ∈ Rd+1
∣xj ∈ {−κ,κ} for j ∈ [d], ∣

d

∑
j=1

xj ∣ ≤ κ
√
2d ln 2d, xd+1 = 1}

where κ ∈ (0,1) is a constant. The action set is the union A = I ∪H.

The linear bandit environment parameterized by θ ∈ Rd+1 is defined as: given action taken At, its
reward rt = ⟨θ,At⟩ + ηt, where ηt ∼ N(0,1) is an independently drawn standard Gaussian noise.
Note that by construction, ηt is σ2-subgaussian with σ = 1.

Notations In this section, we will use A = (A1,⋯,An) ∈ A
n as the random variable about the history

of actions. For a ∈ An, let T (H;a) = ∑n
t=1 1(at ∈H), which represents the total number of pulls of

arms inH in the learning process. For the brevity of the notation, we will write the random variable
T (H;A) as T (H). Let Subx = {S ⊂ [d]∣∣S∣ = x}, the set of subsets of [d] which has x elements.
In subsequent proofs, given a bandit algorithm Alg and an bandit environment θ, we use Pθ,Alg and
Eθ,Alg to denote probability and expectation under the probability space induced by the interaction
history between them. For any set of indices S ∈ 2[d+1], let Sym(S) be the symmetric group of the
set S, and let ΠS = {σ ∈ Sym([d + 1]) ∶ σ(j) = j for all j ∈ [d + 1]/S} be the set of permutations
which permutes only the indices in S, and let Πa∶b = Π{a,a+1,⋯,b}.

Structure of the section Here is the high-level idea of the proof structure.

• Reduction using symmetrization (Section F.1) : First, we will prove that the regret lower bound
of the symmetric sparse linear bandit algorithms (see Definition 7) is also the lower bound of
the general sparse linear bandit algorithms (Lemma 5). Keen readers would note that our action
set construction is symmetric except for (d + 1)-th coordinate, and this is for exploiting the
symmetry. By focus on proving lower bounds for symmetric algorithms, we can exploit the
favorable combinatorial properties of our action spaces to establish tighter lower bounds.

• Count the number of mistakes (Section F.2.1): Next, we will prove the core proposition of the
lower bound proof, Proposition 4. This proposition can be summarized as, ‘the learning agent
has to pull sufficiently large number of arms in H (informative actions with high regret) to
make less mistakes’, where ‘mistakes’ refers to coordinates in the support of θ that has not been
‘hit’ sufficiently by the agent via pulling the low-regret arms I (See Equation (13) for a formal
definition). This implies an inherent tension between pulling informative, high regret armsH
and pulling low regret arms I, which eventually leads to the desired lower bound in Theorem 5.

• Lower bound on symmetric algorithms (Section F.2.2) : Now it remains to show the proof
of Proposition 4. Here, to improve the Ω(s1/3n2/3) regret lower bound proved by Hao et al.
[18] to Ω(s2/3n2/3), we deviate from their usage of Bretagnolle-Huber inequality, and take a
novel combination of various techniques such as change of measure technique, combinatorial
calculation by utilizing symmetry (Claim 1).

F.1 Algorithmic symmetrization: reducing lower bounds for general algorithms to symmetric
algorithms

In this section, we show how a proof of a lower bound for generic algorithms can be reduced to that
of permutation-symmetric (abbrev. symmetric) (augmented) algorithms (Definition 7), specifically
Lemma 5. To introduce symmetric algorithms, let us first define some useful terminology.

20

Definition 4. (Augmented bandit algorithm; Augmentation of an algorithm).

1. Define an augmented bandit algorithm as: at time t, choose action At based on its historical
observations (As, rs)

t−1
s=1; finally it outputs Ŝ ⊂ [d], such that ∣Ŝ∣ = d

2
, and for all i ∈ Ŝ,

RRRRRRRRRRRRR

⎧⎪⎪
⎨
⎪⎪⎩

j ∈ [d] ∶
n

∑
t=1
∣At,j ∣ I(At ∈ I) ≤

n

∑
t=1
∣At,i∣ I(At ∈ I)

⎫⎪⎪
⎬
⎪⎪⎭

RRRRRRRRRRRRR

≥
d

2
;

in other words, all elements in Ŝ are among the top d
2

most frequently chosen coordinates
(including ties) when restricted to arm pull history on I.

2. Given a bandit algorithm Alg, define its augmentation Ãlg as: at time step t, use Alg to output At

based on all historical observations (As, rs)
t−1
s=1; finally, output Ŝ ⊂ [d] as its top d

2
coordinates

i ∈ [d], with the largest value of ∑n
t=1∣At,j ∣ I(At ∈ I), breaking ties in dictionary order. In other

words, the elements in Ŝ are the top d
2

most frequently chosen coordinates when restricted to
arm pull history on I.

Definition 5 (Frequent coordinate set). Let U(a) = {U ∈ Subd/2∣∀i ∈ U,∑
n
t=1 ∣ati∣1(at ∈ I) ≥

(d/2)-max{∑
n
t=1 ∣atj ∣1(at ∈ I)}

d
j=1} where k-maxS for a set S ⊆ R is the k-th largest member of

S.

With this notation, for any augmented bandit algorithm, its output Ŝ ∈ U(A). As a result, we will
mainly focus on (a, U) ∈ An×Subd/2 such that U ∈ U(a), but for the lemmas we keep the generality
and consider any U ⊂ [d].

Remark 3. From the above definitions, it can be readily seen that Alg’s augmentation, Ãlg, is a valid
augmented bandit algorithm.

Remark 4. Ãlg outputs Ŝ by breaking ties in dictionary order. While this breaks symmetry by
favoring coordinates with lower indices, as we will see in our reduction proof (proof of Lemma 5), we
do not require Ãlg to be symmetric (we will define symmetry momentarily in Definition 7); instead,
we will work on a symmetrized version of Ãlg (Definition 10).

Definition 6 (Permutaion over sets of coordinates, and vectors in Rd+1). Given a permutation
σ ∈ Π1∶d:

• For a subset of coordinates S ⊂ [d], define σ(S) ⊂ [d] as σ(S) ∶= {σ(i) ∶ i ∈ S}.

• For vector v ∈ Rd+1, define σ(v) = (vσ−1(1), . . . , vσ−1(d+1)) = Pσv ∈ Rd+1 as the permuted
version of v using σ, where Pσ = (eσ(1), . . . , eσ(d), eσ(d+1)) ∈ R(d+1)×(d+1) is the permutation
matrix2 induced by σ and ej denotes j-th standard basis. Note that for every i ∈ [d + 1],
σ(ei) = eσ(i).

• For sequence of actions a = (a1, . . . , an) ∈ A
n, define σ(a) = (σ(a1), . . . , σ(an)) as its

permuted version using σ.

We will frequently apply the above vector permutation operation in our subsequent proofs, where the
vector v ∈ Rd+1 are often taken as actions At or hypotheses (underlying reward predictors) θ.

Now we are ready to define symmetric augmented bandit algorithms, a special class of bandit
algorithms we will focus on.

Definition 7 (Symmetric augmented bandit algorithm). An augmented bandit algorithm ÃlgS is said
to be symmetric, if for any σ ∈ Π1∶d and any a = (a1, . . . , an) ∈ A

n and U ⊂ [d],

Pθ,ÃlgS(A = a, Ŝ = U) = Pσ(θ),ÃlgS(A = σ(a), Ŝ = σ(U)).

Note that the above permutation symmetry notion is slightly different from Simchowitz et al. [34]
– here we only consider permutations in Π1∶d, i.e., over the first d coordinates (out of all d + 1
coordinates), whereas Simchowitz et al. [34] consider permutations over all coordinates (arms).

For symmetric augmented bandit algorithms, we have the following elementary property.

2Here we use σ’s row representation.

21

Lemma 2. For every symmetric augmented bandit algorithm ÃlgS, any σ ∈ Π1∶d and any function
f ∶ An × 2[d] → R,

Eθ,ÃlgS [f(A, Ŝ)] = Eσ(θ),ÃlgS [f(σ
−1
(A), σ−1(Ŝ))]

Definition 8 (Permutation-invariant action space). An action space A is said to be permutation-
invariant, if for any π ∈ Π1∶d,

π(A) ∶= {π(a) ∶ a ∈ A} = A.

By our construction in the beginning of Section F, our action space A = I ∪ H is permutation
invariant.

Definition 9 (Permuted algorithm). For an augmented bandit algorithm Ãlg on a permutation-
invariant action space A, and a permutation π ∈ Π1∶d, define its π-permuted version Ãlgπ as: first
permute the [d] coordinates using π, and run Ãlg with the permuted coordinates. Formally, at every
time step t:

• Ãlg outputs some action A′t ∈ A, and Ãlgπ accordingly outputs action At = π
−1(A′t) ∈ A

• Receives reward rt = ⟨θ,At⟩ + ηt = ⟨π(θ), π(At)⟩ + ηt = ⟨π(θ),A
′
t⟩ + ηt

• Ãlg outputs Ŝ′, and Ãlgπ outputs Ŝ = π−1(Ŝ′).

The following lemma follows straightforwardly from the definition of Ãlgπ:

Lemma 3. • For any a = (a1, . . . , an) ∈ A
n and U ⊂ [d],

Pθ,Ãlgπ(A = a, Ŝ = U) = Pπ(θ),Ãlg(A = π(a), Ŝ = π(U)).

• For any function f ∶ An × 2[d] → R,

Eθ,Ãlgπ [f(A, Ŝ)] = Eπ(θ),Ãlg [f(π
−1
(A), π−1(Ŝ))] .

Definition 10. For an augmented bandit algorithm Ãlg on a permutation-invariant action space A,
define its symmetrized version ÃlgP as: first, choosing π uniformly at random from Π1∶d, then, run
Ãlgπ on the bandit environment for n rounds.

Lemma 4. We have the following:

1. Pθ,ÃlgP (⋅) =
1

∣Π1∶d∣ ∑π∈Π1∶d
Pθ,Ãlgπ (⋅), and Eθ,ÃlgP[⋅] =

1
∣Π1∶d∣ ∑π∈Π1∶d

Eθ,Algπ[⋅].

2. ÃlgP is a symmetric augmented bandit algorithm.

The definition below formalizes the (pseudo-)regret notion under a specific hypothesis, which provides
useful clarifications when using the averaging hammer to argue regret lower bounds.

Definition 11. Define

Reg(n, θ) = n ⋅max
a∈A
⟨θ, a⟩ −

n

∑
t=1
⟨θ,At⟩

as the pseudo-regret of a sequence of actions (At)
n
t=1 under hypothesis θ.

The main result of this section is the following lemma that reduces proving lower bounds for general
algorithms to proving lower bounds for symmetric augmented algorithms.

Lemma 5. If for all symmetric augmented bandit algorithms ÃlgS, there exists some θ ∈ Θs ∪Θ2s

such that Eθ,ÃlgS [Reg(n, θ)] ≥ R, then, for all bandit algorithms Alg, there exists some θ′ ∈ Θs∪Θ2s

such that Eθ′,Alg [Reg(n, θ′)] ≥ R.

In light of this lemma, in Section F.2, we focus on showing regret lower bounds on symmetric
augmented bandit algorithms under hypotheses in Θs ∪Θ2s.

22

F.1.1 Deferred Proofs

Proof of Lemma 2. For any f ∶ An × 2[d] → R,

Eθ,ÃlgS [f(A, Ŝ)] = ∑
(a,U)∈An×2[d]

Pθ,ÃlgS(A = a, Ŝ = U)f(a, U) (definition of expectation)

= ∑
(a,U)∈An×2[d]

Pσ(θ),ÃlgS(A = σ(a), Ŝ = σ(U))f(a, U) (symmetry)

= ∑
(a,U)∈An×2[d]

Pσ(θ),ÃlgS(σ
−1
(A) = a, σ−1(Ŝ) = U)f(a, U) (algebra)

= Eσ(θ),ÃlgS [f(σ
−1
(A), σ−1(Ŝ))] (definition of expectation)

Proof of Lemma 3. For the first item, denote by A′ = (A′1, . . . ,A
′
n); for any a = (a1, . . . , an) ∈ A

n

and U ⊂ [d],

Pθ,Ãlgπ(A = a, Ŝ = U) = Pθ,Ãlgπ(π
−1
(A′) = a, π−1(Ŝ′) = U) (definition of A′)

= Pθ,Ãlgπ(A
′
= π(a), Ŝ′ = π(U)) (algebra)

= Pπ(θ),Ãlg(A = π(a), Ŝ = π(U)) (switching to Ãlg’s perspective)

The second item is the direct consequence of the first item by the following calculation.

Eθ,Ãlgπ [f(A, Ŝ)] = ∑
(a,U)∈An×2[d]

Pθ,Ãlgπ(A = a, Ŝ = U)f(a, U) (definition of expectation)

= ∑
(a,U)∈An×2[d]

Pπ(θ),Alg(A = π(a), Ŝ = π(U))f(a, U) (the first item)

= Eπ(θ),Alg [f(π
−1
(A), π−1(Ŝ))] . (definition of expectation)

Proof of Lemma 4. The first item follows from the definition of ÃlgP.

For the second item, for any permutation σ ∈ Π1∶d and action history a ∈ An,

Pθ,ÃlgP(A = a, Ŝ = U) =
1

∣Π1∶d∣
∑

π∈Π1∶d

Pθ,Ãlgπ(A = a, Ŝ = U) (the first item)

=
1

∣Π1∶d∣
∑

π∈Π1∶d

Pπ(θ),Ãlg(A = π(a), Ŝ = π(U)) (Lemma 3)

=
1

∣Π1∶d∣
∑

π∈Π1∶d

Pπ○σ(θ),Ãlg(A = π ○ σ(a), Ŝ = π ○ σ(U)) (*)

=
1

∣Π1∶d∣
∑

π∈Π1∶d

Pσ(θ),Ãlgπ(A = σ(a), Ŝ = σ(U)) (Lemma 3)

= Pσ(θ),ÃlgP(A = σ(a), Ŝ = σ(U)), (the first item)

where in step (*), we use the observation that for any σ ∈ Π1∶d, {π ○ σ ∶ π ∈ Π1∶d} = Π1∶d.

Proof of Lemma 5. Given any bandit algorithm Alg, denote by ÃlgP as the symmetrized version
of its augmentation (Definitions 4 and 10). Since ÃlgP is a symmetric augmented algorithm, by
assumption, we have, there exists some θ ∈ Θs ∪Θ2s,

R ≤ Eθ,ÃlgP[Reg(n, θ)]

23

=
1

∣Π1∶d∣
∑

π∈Π1∶d

Eθ,Ãlgπ[Reg(n, θ)] (Lemma 4)

=
1

∣Π1∶d∣
∑

π∈Π1∶d

Eθ,Ãlgπ[n ⋅max
a∈A
⟨θ, a⟩ −

n

∑
t=1
⟨θ,At⟩] (Definition 11)

=
1

∣Π1∶d∣
∑

π∈Π1∶d

Eπ(θ),Ãlg[n ⋅max
a∈A
⟨θ, a⟩ −

n

∑
t=1
⟨θ, π−1(At)⟩] (Lemma 3)

=
1

∣Π1∶d∣
∑

π∈Π1∶d

Eπ(θ),Ãlg[n ⋅max
a∈A
⟨π(θ), a⟩ −

n

∑
t=1
⟨π(θ),At⟩]

(⟨a, π−1(b)⟩ = ⟨π(a), b⟩, and A’s permutation invariance)

=
1

∣Π1∶d∣
∑

π∈Π1∶d

Eπ(θ),Ãlg[Reg(n,π(θ))] (Definition 11)

=
1

∣Π1∶d∣
∑

π∈Π1∶d

Eπ(θ),Alg[Reg(n,π(θ))] (Alg and Ãlg take the same action sequence)

By the pigeonhole principle, there exists π ∈ Π1∶d which satisfies Eπ(θ),Alg[Reg(n,π(θ))] ≥ R, and
this π(θ) ∈ Θs ∪Θ2s is the desired θ′ in Lemma 5.

F.2 Lower bound against symmetric algorithms

F.2.1 Count the number of mistake

From now on, by Lemma 5, we will focus on proving regret lower bound for any symmetric
augmented algorithm ÃlgS (Definition 7). For the brevity of notation, we omit the ÃlgS notations
from P and E. For each history of action A ∈ An, we define the Mθ(Ŝ), the number of false negative
mistakes respect to θ as follows:

Mθ(Ŝ) ∶= ∣supp(θ)∖Ŝ∣ (13)

Let s be multiple of 4. For ξ = 1
4

, we like to show the following claim.

Proposition 4. If Pθ(Mθ(Ŝ) ≥ s/4) ≤ ξ for all θ ∈ Θs ∪Θ2s, then ∃θ′ ∈ Θs such that Eθ[T (H)] ≥
Ω(1

κ2ϵ2
)

Given the above proposition, we are now ready to prove Theorem 8.

Proof of Theorem 8. Let a∗ = argmaxa∈A⟨θ, a⟩. If we note that ∑n
t=1 ∣Atj ∣1(At ∈ I) ≤

4s(n−T (H))
d

for all j ∉ Ŝ (if not, it contradicts∑d
j=1∑

n
t=1 ∣Atj ∣1(At ∈ I) ≤ 2s(n−T (H))) and a∗ = (θ+ed+1)/ϵ ∈

I, we can lower bound the regret as follows:

Regn =
n

∑
t=1
⟨θ, a∗ −At⟩ =

n

∑
t=1
[

d

∑
j=1

θj(a
∗
j −Atj) + θd+1(a

∗
d+1 − (At)d+1)]

=
n

∑
t=1
[

d

∑
i=1
θj(a

∗
j −Atj) + 1(At ∈H)] (θd+1 = −1 and ∀a ∈H, ad+1 = +1)

=
n

∑
t=1
[ϵ ∑

j∈supp(θ)/{d+1}
(a∗j −Atj) + 1(At ∈H)]

(∀j ∈ [d] ∖ supp(θ), θj = 0 and for all j ∈ supp(θ) ∖ {d + 1}, θj = ±ϵ)

= ϵ
n

∑
t=1

∑
j∈supp(θ)/{d+1}

(1 −Atj) + T (H) (a∗ = (θ + ed+1)/ϵ)

≥ ϵ
n

∑
t=1

∑

j∈Mθ(Ŝ)
(1 − ∣Atj 1(At ∈ I)∣ − ∣Atj 1(At ∈H)∣) + T (H)

24

≥ ϵ
n

∑
t=1

∑

j∈Mθ(Ŝ)
(1 − ∣Atj 1(At ∈ I)∣) + T (H)(1 − ϵκ∣Mθ(Ŝ)∣)

≥ ϵ ∑

j∈Mθ(Ŝ)

n

∑
t=1
(1 − ∣Atj 1(At ∈ I)∣) (ϵκ∣Mθ(Ŝ)∣ ≤ 2ϵκs ≤ 1)

≥ ϵ ∑

j∈Mθ(Ŝ)
[n −

n

∑
t=1
∣Atj ∣1(At ∈ I)]

≥ ϵ ∑

j∈Mθ(Ŝ)
(n −

4sn

d
) (∑n

t=1 ∣Atj ∣1(At ∈ I) ≤
4s(n−T (H))

d
)

≥ ϵ
s

4
(n −

4sn

d
)

and therefore 1(Mθ(Ŝ) ≥
s
4
)Regn ≥ ϵ

s
4
(n − 4sn

d
). Therefore, we can lower bound the regret further

as follows: If there exists a θ ∈ Θs ∪Θ2s that satisfies Pθ(Mθ(Ŝ) ≥ s/4) ≥ ξ, then

Eθ[Regn] ≥ Eθ[1(Mθ(Ŝ) ≥
s

4
)Regn]

≥ ξ
s

4
(n −

4sn

d
)ϵ = Ω(ϵsnξ)

On the other hand, if Pθ(Mθ(Ŝ) ≥ s/4) ≤ ξ for all θ ∈ Θs ∪Θ2s, then by Proposition 4 ∃θ′ such
that Eθ′[T (H)] ≥ Ω(

1
κ2ϵ2
). Combining with the fact that for every θ ∈ Θs ∪Θ2s, maxa∈I ⟨θ, a⟩ −

maxa∈H ⟨θ, a⟩ ≥ sϵ − (κsϵ − 1) ≥ Ω(1), we can finally lower bound the regret as

Eθ′[Regn] ≥ (1 + (1 − κ)ϵs)Eθ′[T (H)] ≥ Ω(
1

κ2ϵ2
)

. By construction, ϵ = κ−2/3s−1/3n−1/3, we get the desired regret lower bound Ω(κ−2/3s2/3n2/3)
result for both cases.

F.2.2 Proof of Proposition 4

Let’s assume that ∀θ ∈ Θs ∪Θ2s,Pθ(Mθ(Ŝ) ≥ s/4) ≤ ξ. Define

θ′ = (ϵ,⋯, ϵ
²

s

,0,⋯,0,−1) ∈ Θs

θ = (ϵ,⋯, ϵ
²

2s

,0,⋯,0,−1) ∈ Θ2s

θ̃ = θ − θ′.

. The following two lemmas show the main advantage why we set θ′ and θ in this way.

Lemma 6. Let ϕ ∈ Rd, π ∈ Π, E1,E2 ∈ Subd/2 be the elements which satisfies π(ϕ) = ϕ and
π(E1) = E2. For any symmetric algorithm AlgS, we have that

PAlgS,ϕ(Ŝ = E1, T (H) ≤ τ) = PAlgS,ϕ(Ŝ = E2, T (H) ≤ τ)

.

Proof. To see this, note that:

PAlgS,ϕ(Ŝ = E1, T (H) ≤ τ) =EAlgS,ϕ

⎡
⎢
⎢
⎢
⎢
⎣

1
⎛

⎝
Ŝ = E1,

n

∑
t=1

1(At ∈H) ≤ τ
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

=EAlgS,π(ϕ)

⎡
⎢
⎢
⎢
⎢
⎣

1
⎛

⎝
π−1(Ŝ) = E1,

n

∑
t=1

1(π−1(At) ∈H) ≤ τ
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

25

=EAlgS,π(ϕ) [1 (Ŝ = π(E1), T (H) ≤ τ)]

=EAlgS,ϕ [1 (Ŝ = E2, T (H) ≤ τ)]

Let Qm ∶= {S ∈ Subd/2∣Mθ(S) = m} and Q′m = {S ∈ Subd/2∣Mθ′(S) = m} be the set of size d/2
sets which has exactly m mistakes with θ and θ′, respectively.

Lemma 7. For our θ, for each E1,E2 ∈ Q 1
4 s−l, there exists π ∈ {π1 ○ π2∣π1 ∈ Π1∶2s, π2 ∈ Π2s+1∶d}

which satisfies π(E1) = E2. Similarly, for each E′1,E
′
2 ∈ Q

′
3
4 s−l

, there exists π ∈ {π1 ○ π2∣π1 ∈
Π1∶s, π2 ∈ Πs+1∶d} which satisfies π(E1) = E2.

Proof. Since ∣E1 ∩ [1 ∶ 2s]∣ = ∣E2 ∩ [1 ∶ 2s]∣ and ∣E1 ∩ [2s + 1 ∶ d]∣ = ∣E2 ∩ [2s + 1 ∶ d]∣, there exists
π ∈ {π1 ○ π2∣π1 ∈ Π1∶2s, π2 ∈ Π2s+1∶d} which satisfies π(E1) = E2. Similar proof holds also for
E′1,E

′
2.

Then,

Pθ(Mθ(Ŝ) ≥ s/4, T (H) ≤ τ) ≥

1
4 s

∑
l=0

Pθ(Mθ(Ŝ) =
3

4
s − l, T (H) ≤ τ)

Let l ∈ {1, . . . , s/4}, and let Ra = Q 3
4 s−a ∩ Q

′
1
4 s−a

. For a ∈ Rd and r ∈ R, and ϕ ∈ {θ, θ′}, let

pϕ(r∣a) =
1√
2π

exp(− (r−⟨a,ϕ⟩)
2

2
) be the probability density function of the reward r when the action

a is given under hypothesis ϕ. Now pick one element E ∈ Rl. Then,

Pθ(M =
3

4
s − l, T (H) ≤ τ) (14)

= Pθ(Ŝ ∈ Q 3
4 s−l, T (H) ≤ τ) (15)

= ∣Q 3
4 s−l∣Pθ(Ŝ = E,T (H) ≤ τ) (Lemma 6 and 7)

=
∣Q 3

4 s−l∣

∣Rl∣
Pθ(Ŝ ∈ Rl, T (H) ≤ τ) (Lemma 6 and 7)

=
∣Q 3

4 s−l∣

∣Rl∣
Eθ′[1(Ŝ ∈ Rl, T (H) ≤ τ)

n

∏
t=1

pθ(rt∣At)

pθ′(rt∣At)
] (change of measure)

=
∣Q 3

4 s−l∣

∣Rl∣
Eθ′[1(Ŝ ∈ Rl, T (H) ≤ τ) exp(−

n

∑
t=1

ln
pθ′(rt∣At)

pθ(rt∣At)
)] (16)

Here, we will use the following Claim 1 to bound this empirical KL divergence to the fixed constant.

Claim 1.

Eθ′[1(Ŝ ∈ Rl, T (H) ≤ τ) exp(−
n

∑
t=1

ln
pθ′(rt∣At)

pθ(rt∣At)
)]

≥ Pθ′(Ŝ ∈ Rl, T (H) ≤ τ) exp(−KL(ρ, δ, τ)) − δ
1+ 1

ρ

where KL(ρ, δ, τ) = 1
2
ϵ2(1 + ρ)(4s

3n
d

+ 77sκ2τ) + 1
ρ
ln 1

δ

Now, decide ρ and δ later and continuing from the previous inequality with KL(ρ, δ, τ) = 1
2
ϵ2(1 +

ρ)(4s
3n
d

+ 77sκ2τ) + 1
ρ
ln 1

δ
,

(16) ≥
∣Q 3

4 s−l∣

∣Rl∣
(Pθ′(Ŝ ∈ Rl, T (H) ≤ τ) exp(−KL(ρ, δ, τ)) − δ

1+ 1
ρ) (Claim 1)

26

=
∣Q 3

4 s−l∣

∣Q′s
4−l
∣
(Pθ′(Mθ′(Ŝ) =

s

4
− l, T (H) ≤ τ) exp(−KL(ρ, δ, τ))) −

∣Q 3
4 s−l∣

∣Rl∣
δ1+

1
ρ

(Lemma 6 and 7)

=
∣Q 3

4 s−l∣

∣Q′s
4−l
∣

⎛

⎝
Pθ′(Mθ′(Ŝ) =

s

4
− l, T (H) ≤ τ) exp(−KL(ρ, δ, τ)) −

∣Q′s
4−l
∣

∣Rl∣
δ1+

1
ρ
⎞

⎠

≥
∣Q 3

4 s−l∣

∣Q′s
4−l
∣
(Pθ′(Mθ′(Ŝ) =

s

4
− l, T (H) ≤ τ) exp(−KL(ρ, δ, τ)) − sδ1+

1
ρ) (Lemma 8)

For the last inequality, we used the following lemma.

Lemma 8. For d > (s + 1)2, s > 5, and l ∈ [s
4
], we have

∣Q′s
4
−l∣

∣Rl∣ < s.

In short,

Pθ(Mθ(Ŝ) =
3

4
s − l, T (H) ≤ τ) ≥

∣Q 3s
4 −l∣

∣Q′s
4−l
∣
(Pθ′(Mθ′(Ŝ) =

s

4
− l, T (H) ≤ τ) exp(−KL(ρ, δ, τ)) − sδ1+

1
ρ) .

Let Y =minl∈ s4
∣Q 3s

4
−l
∣

∣Q′s
4
−l
∣ . Then,

Pθ(Mθ(Ŝ) =
3

4
s − l, T (H) ≤ τ) ≥ Y (Pθ′(Mθ′(Ŝ) =

s

4
− l, T (H) ≤ τ) exp(−KL(ρ, δ, τ)) − sδ1+

1
ρ) .

Summing up both sides for l ∈ [s
4
],

ξ ≥

s
4

∑
l=1

Pθ(M =
3

4
s − l, T (H) ≤ τ)

≥ Y (Pθ′(M ≤
s

4
− 1, T (H) ≤ τ) exp(−KL(ρ, δ, τ)) −

s2

4
δ1+

1
ρ)

≥ Y (Pθ′(M ≤
s

4
− 1) −

Eθ′[T (H)]

τ
) exp(−KL(ρ, δ, τ)) −

s2Y

4
δ1+

1
ρ

(P(A,B) ≥ P(A) − P(B̄); Markov’s ineq.)

≥ Y (1 − ξ −
Eθ′[T (H)]

τ
) exp(−KL(ρ, δ, τ)) −

s2Y

4
δ1+

1
ρ

= Y (1 − 2ξ) exp(−KL(ρ, δ,Eθ′[T (H)]/ξ)) −
s2Y

4
δ1+

1
ρ (set τ = Eθ′[T (H)]/ξ)

≥
Y

2
exp(−KL(ρ, δ,Eθ′[T (H)]/ξ)) −

s2Y

4
δ1+

1
ρ (setting ξ ≤ 1

4
)

Setting δ = (4ξ
s2Y
)

ρ
ρ+1 , ρ = 3 and rearranging the last equation with sufficiently large s we get:

Eθ′[T (H)] ≥
ξ

77sκ2
(

1

4ϵ2
ln
Y

4ξ
−
4ns3

d
) (Lemma 9)

We are talking about the data-poor regime where d > κ−4/3s4/3n1/3. So setting ϵ = κ−2/3s−1/3n1/3
and using the following Lemma 9 leads the conclusion that the order of Eθ′[T (H)] ≥ Ω(

1
κ2ϵ2
).

Lemma 9. lnY = Ω(s), and for sufficiently large s, ln s2Y
4ξ
≤ 2 ln Y

4ξ

F.2.3 Proof of the Claim 1

This claim consists of two parts - prove the relationship between empirical KL and the true KL
divergence, and the KL divergence calculation part. We will prove the first inequality as follows.

27

Lemma 10. For ρ > 0, let

Bθ′,θ(ρ) ∶=
⎛

⎝
∃T ≥ 1 s.t.

T

∑
t=1

ln(
pθ′(rt∣at)

pθ(rt∣at)
) ≥ (1 + ρ)

T

∑
t=1

KL(pθ′(⋅∣at), pθ(⋅∣at)) +
1

ρ
ln(δ−1)

⎞

⎠

Then, Pθ′(Bθ,θ′(ρ)) ≤ δ.

Proof. Let Jt ∶= ln(
pθ′(rt∣at)
pθ(rt∣at)). Now let Ht = exp(ρ(∑

t
s=1 Js − (1 + ρ)Eθ′,s−1[Js∣as]) with H0 = 1.

Now we will prove that for all ρ > 0 the {Ht}
T
t=0 is a non-negative super-martingale.

Eθ′,t−1[Ht] = Eθ′,t−1[exp(ρ(
t

∑
s=1

Js − (1 + ρ)Eθ′,s−1[Js∣as]))]

=Ht−1Eθ′,t−1[exp(ρJt − (ρ + ρ
2
)Eθ′,t−1[Jt∣at])]

Now the proof boils down to check the case when Eθ′,t−1[exp(ρ(Jt − (1 + ρ)Et−1[Jt∣at])] ≤ 1.
Fortunately, we can explicitly calculate Jt. Let µt = ⟨θ, at⟩ and µ′t = ⟨θ

′, at⟩. Then

Jt =
−2r(µt − µ

′
t) − (µ

′
t)

2 + µ2
t

2
Eθ′,t−1[Jt∣at] = KL(pθ′(⋅∣at), pθ(⋅∣at))

= KL(N (µ′t,1),N (µt,1)) =
(µ′t − µt)

2

2

where KL(pθ′(⋅∣at), pθ(⋅∣at)) =
(µt−µ′t)

2

2
. Now by the 1-subgaussianity of rt − µ′t,

Eθ′,t−1[exp(ρ(Jt − (1 + ρ)Eθ′,t−1[Jt∣at])] = Eθ′,t−1 [Eθ′,t−1[exp(ρ(Jt − (1 + ρ)Eθ′,t−1[Jt∣at])∣at]]

= Eθ′,t−1 [Eθ′,t−1[exp(ρ
−2rt(µt − µ

′
t) − (µ

′
t)

2 + µ2
t

2
)∣at] exp(−ρ(1 + ρ)

(µt − µ
′
t)

2

2
)]

≤ Eθ′,t−1[exp(
ρ2(µt − µ

′
t)

2

2
) exp(ρ

−2µ′t(µt − µ
′
t) − (µ

′
t)

2 + µ2
t

2
) exp(−ρ(1 + ρ)

(µt − µ
′
t)

2

2
)]

= 1

The last inequality holds because of the 1-subgaussian property of the ηt. Therefore, Eθ′,t−1[Ht] ≤

Ht−1, and therefore {Ht}
T
t=0 is a supermartingale. Finally, using Ville’s maximal inequality on Ht

we can achieve the desired probability inequality.

By the above Lemma 10, one can induce the following relationship.

(16) =
∣Q 3

4 s−l∣

∣Rl∣
Eθ′[1(Ŝ ∈ Rl, T (H) ≤ τ) exp(−

n

∑
t=1

ln
pθ′(rt∣at)

pθ(rt∣at)
)]

=
∣Q 3

4 s−l∣

∣Rl∣
Eθ′ [1 (Ŝ ∈ Rl, T (H) ≤ τ,¬Bθ,θ′(ρ)) exp(−

1

2
(1 + ρ)

n

∑
t=1
⟨At, θ̃⟩

2
−
1

ρ
ln

1

δ
)]

(Lemma 10)

=
∣Q 3

4 s−l∣

∣Rl∣
Eθ′ [1 (Ŝ ∈ Rl, T (H) ≤ τ,¬Bθ,θ′(ρ)) exp

⎛

⎝
−
1

2
(1 + ρ)

n

∑
t=1
⟨At, θ̃⟩

2⎞

⎠
]

´¹¹¹¸¹¹¶
(X)

exp(−
1

ρ
ln

1

δ
)

Now the main part of the proof is bounding (X).

(X) =Eθ′

⎡
⎢
⎢
⎢
⎢
⎣

1 (Ŝ ∈ Rl, T (H) ≤ τ,¬Bθ,θ′(ρ)) exp
⎛

⎝
−
1

2
(1 + ρ)

n

∑
t=1
⟨At, θ̃⟩

2⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

≥Eθ′

⎡
⎢
⎢
⎢
⎢
⎣

1 (Ŝ ∈ Rl, T (H) ≤ τ) exp
⎛

⎝
−
1

2
(1 + ρ)

n

∑
t=1
⟨At, θ̃⟩

2⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

− δ

28

Define Π = {π1 ○ π2 ∶ π1 ∈ Sym([1 ∶ s]), π2 ∈ Sym([s + 1 ∶ d])}. Importantly, for any π ∈ Π, π(θ′) =
θ′.

We focus on the first term in the above expression:

Eθ′

⎡
⎢
⎢
⎢
⎢
⎣

1 (Ŝ ∈ Rl, T (H) ≤ τ) exp
⎛

⎝
−
1

2
(1 + ρ)

n

∑
t=1
⟨At, θ̃⟩

2⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

=
1

∣Π∣
∑
σ∈Π

Eσ(θ′)

⎡
⎢
⎢
⎢
⎢
⎣

1 (σ−1(Ŝ) ∈ Rl) ⋅ 1
⎛

⎝

n

∑
t=1
I(σ−1(At) ∈H) ≤ τ

⎞

⎠
exp
⎛

⎝
−
1

2
(1 + ρ)

n

∑
t=1
⟨σ−1(At), θ̃⟩

2⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

(Lemma 2)

=Eθ′

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎝

1

∣Π∣
∑
σ∈Π

1 (σ−1(Ŝ) ∈ Rl) exp
⎛

⎝
−
1

2
(1 + ρ)

n

∑
t=1
⟨σ−1(At), θ̃⟩

2⎞

⎠

⎞
⎟
⎠
1
⎛

⎝

n

∑
t=1
I(At ∈H) ≤ τ

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(17)

Now for any realization of A, Ŝ, namely, a = (a1, . . . , an) ∈ An, u ⊂ [d], we examine the quantity

1

∣Π∣
∑
σ∈Π

1 (σ−1(u) ∈ Rl) exp
⎛

⎝
−
1

2
(1 + ρ)

n

∑
t=1
⟨σ−1(at), θ̃⟩

2⎞

⎠

Claim 2. For any set u such that ∣u∣ = d
2

, and any a1, . . . , an,

1

∣Π∣
∑
σ∈Π

1 (σ−1(u) ∈ Rl) exp
⎛

⎝
−
1

2
(1 + ρ)

n

∑
t=1
⟨σ−1(at), θ̃⟩

2⎞

⎠

≥ 1(u ∈ Q′1
4 s−l
) ⋅
∣Rl∣

∣Q′1
4 s−l
∣
⋅ exp(−

1

2
(1 + ρ)(

4s3n

d
+ 77sκ2T (H;a))ϵ2)

Proof. If u ∉ Q′1
4 s−l

, then for any permutation σ ∈ Π, it must be the case that σ−1(u) ∉ Q′1
4 s−l

, and

therefore, σ−1(u) ∉ Rl. In this case, both sides are equal to zero and the claim is trivially true.

Otherwise, u ∈ Q′1
4 s−l

. Define Πlegal,u = {σ ∈ Π ∶ σ−1(u) ∈ Rl}. Using this notation, the left hand
side can be equivalently written as:

1

∣Π∣
∑

σ∈Πlegal,u

exp
⎛

⎝
−
1

2
(1 + ρ)

n

∑
t=1
⟨σ−1(at), θ̃⟩

2⎞

⎠

≥
∣Πlegal,u∣

∣Π∣
⋅

1

∣Πlegal,u∣
∑

σ∈Πlegal,u

exp
⎛

⎝
−
1

2
(1 + ρ)

n

∑
t=1
⟨σ−1(at), θ̃⟩

2⎞

⎠

≥
∣Πlegal,u∣

∣Π∣
⋅ exp

⎛
⎜
⎜
⎝

−
1

2
(1 + ρ)

⎛
⎜
⎝

1

∣Πlegal,u∣
∑

σ∈Πlegal,u

n

∑
t=1
⟨σ−1(at), θ̃⟩

2⎞
⎟
⎠

⎞
⎟
⎟
⎠

(Jensen)

≥
∣Πlegal,u∣

∣Π∣
⋅ exp(−

1

2
(1 + ρ)(

4s3n

d
+ 77sκ2T (H;a))ϵ2) (Lemma 12)

=
∣Rl∣

∣Q′1
4 s−l
∣
⋅ exp(−

1

2
(1 + ρ)(

4s3n

d
+ 77sκ2T (H;a))ϵ2) (Lemma 11)

We defer Lemma 12 and Lemma 11 to Section F.2.4. Proof of Claim 1 basically ends after combining
Lemma 10 and the above claim. However, for the clear description how this was used in the main

29

proof, we now continue Equation (17), which, using the above claim, is at least

Eθ′

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎝

1

∣Π∣
∑
σ∈Π

1 (σ−1(Ŝ) ∈ Rl) exp
⎛

⎝
−
1

2
(1 + ρ)

n

∑
t=1
⟨σ−1(At), θ̃⟩

2⎞

⎠

⎞
⎟
⎠
1
⎛

⎝

n

∑
t=1
I(At ∈H) ≤ τ

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≥Eθ′

⎡
⎢
⎢
⎢
⎢
⎣

1(Ŝ ∈ Q′1
4 s−l
)1
⎛

⎝

n

∑
t=1
I(At ∈H) ≤ τ

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

⋅
∣Rl∣

∣Q′1
4 s−l
∣
⋅ exp(−

1

2
(1 + ρ)(

4s3n

d
+ 77sκ2τ)ϵ2)

=Eθ′ [1(Ŝ ∈ Q
′
1
4 s−l

, T (H) ≤ τ)] ⋅
∣Rl∣

∣Q′1
4 s−l
∣
⋅ exp(−

1

2
(1 + ρ)(

4s3n

d
+ 77sκ2τ)ϵ2)

=Eθ′ [1 (Ŝ ∈ Rl, T (H) ≤ τ)] ⋅ exp(−
1

2
(1 + ρ)(

4s3n

d
+ 77sκ2τ)ϵ2)

Therefore, in conclusion,

(16) ≥
∣Q 3

4 s−l∣

∣Rl∣

⎛

⎝
Eθ′ [1 (Ŝ ∈ Rl, T (H) ≤ τ)] ⋅ exp(−

1

2
(1 + ρ)(

4s3n

d
+ 77sκ2τ)ϵ2 −

1

ρ
ln

1

δ
) − δ1+

1
ρ
⎞

⎠

and now one can keep proceed from (16).

F.2.4 Deferred proof for Claim 1

Lemma 11. For any u ∈ Q′1
4 s−l

,

∣Πlegal,u∣

∣Π∣
=
∣Rl∣

∣Q′1
4 s−l
∣

Proof. It suffices to prove ∣Πlegal,u∣∣Q
′
1
4 s−l
∣ = ∣Rl∣∣Π∣. To see this, first note that for any û ∈ Q 1

4 s−l,
∣Πlegal,û∣ = ∣Πlegal,u∣. Next, note,

(LHS) = ∑
û∈Q′1

4
s−l

∣Πlegal,û∣

= ∑
û∈Q′1

4
s−l

∑
σ∈Π

I(σ(û) ∈ Rl)

= ∑
σ∈Π

∑
û∈Q′1

4
s−l

I(σ(û) ∈ Rl)

= ∑
σ∈Π
∣Rl∣

= (RHS).

Lemma 12. Assume s ≤
√
d and d ≥ 16. For any a ∈ An and u ∈ U(a) with u ∈ Q′1

4 s−l
,

1

∣Πlegal(l, u)∣
∑
t

∑
σ∈Πlegal(l,u)

⟨σ−1(at), θ̃⟩
2
≤ (

4s3n

d
+ 77sκ2T (H;a)) ϵ2

Proof. Let us first focus on t ∶ at ∈ I where I is the reward arm set.
1

∣Πlegal(l, u)∣
∑

t∶at∈I
∑

σ∈Πlegal(l,u)
⟨σ−1(at), θ̃⟩

2

≤
1

∣Πlegal(l, u)∣
∑

t∶at∈I
sϵ2

2s

∑
j=s+1

∑
σ∈Πlegal(l,u)

∣atσ−1(j)∣

30

≤
1

∣Πlegal(l, u)∣
∑

t∶at∈I
sϵ2

2s

∑
j=s+1

∑
σ∈Πlegal(l,u)

d

∑
h=s+1

∣ath∣1 (σ
−1
(j) = h)

≤ sϵ2
2s

∑
j=s+1

∑
t∶at∈I

d

∑
h=s+1

∣ath∣ ⋅
1

∣Πlegal(l, u)∣
∑

σ∈Πlegal(l,u)
1 (σ−1(j) = h)

Let us compute ∑σ∈Πlegal(l,u) 1 (σ
−1(j) = h).

WLOG, let us consider the following specific u: u = {1, . . . , 3
4
s + l, 3

2
s + 1, . . . , 3

2
s + k} where

k = d
2
− (3

4
s + l). Define Seg1 = [1 ∶ s], Seg2 = [s + 1 ∶ 2s], and Seg3 = [2s + 1 ∶ d]. Note that u

has exactly s − (s/4 − l) = 3
4
s + l members in Seg1, so a legal permutation σ−1 should choose s/2

coordinates from the remaining members of u (there are k of them) and choose s/2 coordinates from
{s + 1, . . . , 3

2
s} ∪ { 3

2
s + k + 1, . . . , d} then put those two into Seg2.

Therefore, we need to consider the following two cases:

• h ∈ Seg2: Permutations that take one correct coordinate and puts it into a correct coordinate
(correct = Seg2). Thus, we need to multiply the following two:

– the segment 1: s!
– the segment 2: (k−1s

2−1
)(

d−s−k
s
2
)(s − 1)!(d − 2s)!

• h ∈ Seg3: take one correct coordinate and puts it into an incorrect coordinate.
– the segment 1: s!
– the segment 2: (k−1s

2
)(

d−s−k
s
2−1
)(s − 1)!(d − 2s)!

Note that ∣Πlegal(l, u)∣ = s! ⋅ (
k
s
2
)(

d−s−k
s
2
)s!(d − 2s)!.

For the first case,

s!(k−1s
2−1
)(

d−s−k
s
2
)(s − 1)!(d − 2s)!

∣Πlegal(l, u)∣
=

1

2k

For the second case, we get 1
2(d−s−k− s

2+1)
. Plugging in the definition of k, we get that

sϵ2
2s

∑
j=s+1

∑
t∶at∈I

d

∑
h=s+1

∣ath∣ ⋅
1

∣Πlegal(l, u)∣
∑

σ∈Πlegal(l,u)
1 (σ−1(j) = h)

≤ sϵ2
2s

∑
j=s+1

∑
t∶at∈I

d

∑
h=s+1

∣ath∣ ⋅
1

d − 2s

≤
2s3ϵ2n

d − 2s
≤
4s3ϵ2n

d
(s ≤ d

4
)

For the second part,
1

∣Πlegal(l, u)∣
∑

t∶at∈H
∑

σ∈Πlegal(l,u)
⟨σ−1(at), θ̃⟩

2

=
κ2ϵ2

∣Πlegal(l, u)∣
∑

t∶at∈H
∑

σ∈Πlegal(l,u)

⎛
⎜
⎝

2s

∑
j=s+1

∣atσ−1(j)∣
2
+ ∑

a,b∈Seg2∶a≠b
atσ−1(a)atσ−1(b)

⎞
⎟
⎠

= ϵ2 ⋅

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

sκ2T (H;a) + ∑
t∶at∈H

∑
a,b∈Seg2∶a≠b

1

∣Πlegal(l, u)∣
∑

σ∈Πlegal(l,u)
atσ−1(a)atσ−1(b)

´¹¹¹¸¹¹¹¶
=∶ (Z ′2)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

31

To compute (Z ′2), let us define the following where the first two are false positives w.r.t. supp(θ′)
and the last two are true negatives w.r.t. supp(θ′):

C+ = {i ∈ S
′
/[s]∣A′ti = κ}

C− = {i ∈ S
′
/[s]∣A′ti = −κ}

M+ = {i ∈ [s + 1 ∶ d]/S′∣A′ti = κ}

M− = {i ∈ [s + 1 ∶ d]/S′∣A′ti = −κ} .

Let c+, c−,m+,m− be ∣C+∣, ∣C−∣, ∣M+∣, ∣M−∣, respectively. Note that c+ + c− = d
2
− 3

4
s − l = k and

m+ +m− =
d
2
− 1

4
s + l = d − s − k. Then,

• When Atπ−1(a)Atπ−1(b) = κ
2:

– Common part COM = (s − 2)!(d − 2s)!s!

– Atπ−1(a) ∈ C+,Atπ−1(b) ∈ C+: c+ × (c+ − 1) × (k−2s
2−2
)(

d−s−k
s
2
)COM

– Atπ−1(a) ∈M+,Atπ−1(b) ∈M+: m+ × (m+ − 1) × (ks
2
)(

d−s−k−2
s
2−2

)COM

– Atπ−1(a) ∈ C−,Atπ−1(b) ∈ C−: c− × (c− − 1) × (k−2s
2−2
)(

d−s−k
s
2
)COM

– Atπ−1(a) ∈M−,Atπ−1(b) ∈M−:m− × (m− − 1) × (ks
2
)(

d−s−k−2
s
2−2

)COM

– Atπ−1(a) ∈ C+,Atπ−1(b) ∈M+ and opposite: 2 × c+ ×m+ × (
k−1
s
2−1
)(

d−s−k−1
s
2−1

)COM

– Atπ−1(a) ∈ C−,Atπ−1(b) ∈M− and opposite: 2 × c− ×m− × (
k−1
s
2−1
)(

d−s−k−1
s
2−1

)COM

• When Atπ−1(a)Atπ−1(b) = −κ
2:

– Atπ−1(a) ∈ C+,Atπ−1(b) ∈ C− and opposite: 2 × c+ × c− × (
k−2
s
2−2
)(

d−s−k
s
2
)COM

– Atπ−1(a) ∈M+,Atπ−1(b) ∈M− and opposite: 2 ×m+ ×m− × (
k
s
2
)(

d−s−k−2
s
2−2

)COM

– Atπ−1(a) ∈ C+,Atπ−1(b) ∈M− and opposite: 2 × c+ ×m− × (
k−1
s
2−1
)(

d−s−k−1
s
2−1

)COM

– Atπ−1(a) ∈M+,Atπ−1(b) ∈ C− and opposite: 2 ×m+ × c− × (
k−1
s
2−1
)(

d−s−k−1
s
2−1

)COM

To evaluate (Z ′2), note that

COM

∣Πlegal(l, u)∣
=

1

(
k
s/2) ⋅ (

d−s−k
s/2)s(s − 1)

Assuming d ≥ s2 and s ≥ 4, we have that k ∧ (d − s − k) ≥ d

2
√
2

. This also implies that s ≥ 2, k ≥ 2,
and d − s − k ≥ 2. Note that

(
k − 2
s
2
− 2
)(
d − s − k

s
2

) ⋅
COM

∣Πlegal(l, u)∣
=

s
2
(s
2
− 1)

s(s − 1)k(k − 1)

(
k
s
2

)(
d − s − k − 2

s
2
− 2

) ⋅
COM

∣Πlegal(l, u)∣
=

s
2
(s
2
− 1)

s(s − 1)(d − s − k)(d − s − k − 1)

(
k − 1
s
2
− 1
)(
d − s − k − 1

s
2
− 1

) ⋅
COM

∣Πlegal(l, u)∣
=

s
2
⋅ s
2

s(s − 1) ⋅ k(d − s − k)

Then,

(Z ′2) ≤ κ
2
s
2
(s
2
− 1)

s(s − 1)
(
c+(c+ − 1) + c−(c− − 1) − 2c+c−

k(k − 1)
+
m+(m+ − 1) +m−(m− − 1) − 2m+m−

(d − s − k)(d − s − k − 1)
)

+ κ2
s
2
⋅ s
2

s(s − 1)
(2 ⋅
(c+ − c−)(m+ −m−)

k(d − s − k)
)

≤ κ2
s
2
(s
2
− 1)

s(s − 1)
(
(c+ − c−)

2

k(k − 1)
+

(m+ −m−)
2

(d − s − k)(d − s − k − 1)
)

32

+ κ2
s
2
⋅ s
2

s(s − 1)
(2 ⋅
(c+ − c−)(m+ −m−)

k(d − s − k)
) (c+ + c− ≥ 0,m+ −m− ≥ 0)

≤ κ2
s
2
⋅ s
2

s(s − 1)
(
(c+ − c−)

2

k(k − 1)
+

(m+ −m−)
2

(d − s − k)(d − s − k − 1)
+ 2 ⋅

(c+ − c−)(m+ −m−)

k(d − s − k)
)

= κ2
s
2
⋅ s
2

s(s − 1)
⋅ (
c+ − c−
k

+
m+ −m−
d − s − k

)
2

´¹¹¹¸¹¹¶
=∶ (Z ′2,1)

+κ2
s
2
⋅ s
2

s(s − 1)
(
(c+ − c−)

2

k2(k − 1)
+

(m+ −m−)
2

(d − s − k)2(d − s − k − 1)
)

´¹¹¹¸¹¹¶
=∶ (Z ′2,2)

(1
x(x−1) =

1
x2 +

1
x2(x−1))

For (Z ′2,1), let w = (c++m+)−(c−+m−)
2

. Note ∣2w∣ ≤
√
2d ln(2d) + s. Then,

• c+ + c− = k, m+ +m− = d − s − k
• c+ +m+ = d−s

2
+w, c− +m− = d−s

2
−w.

• c+ = d−s
2
+w −m+ and c− = d−s

2
−w −m−

Thus, c+ − c− = 2w − (m+ −m−). So,

c+ − c−
k

+
m+ −m−
d − s − k

=
2w − (m+ −m−)

k
+
m+ −m−
d − s − k

=
1

k
(2w − (

d − s − 2k

d − s − k
)(m+ −m−))

=
1

k
(2w − (

2l − s

d − s − k
)(m+ −m−))

Ô⇒ ∣
c+ − c−
k

+
m+ −m−
d − s − k

∣ ≤
1

k

⎛

⎝
2w +∣

2l − s

d − s − k
∣ (d − s − k)

⎞

⎠

≤
1

k
(
√
2d ln(2d) + s + s) ≤

12
√
ln(2d)
√
d

(k ≥ d

2
√
2

,
√
2d ln(2d) > s)

Thus, using s ≥ 2 and d > lnd,

(Z ′2,1) = κ
2

s
2
⋅ s
2

s(s − 1)
⋅
144 ln(2d)

d2
≤ κ2 ⋅

72

d

For (Z ′2,2), using k ∧ (d − s − k) ≥ d
4

,

(Z ′2,2) = κ
2
⋅

s
2
⋅ s
2

s(s − 1)
⋅ (

1

k − 1
+

1

d − s − k − 1
)

≤ κ2 ⋅
1

2
⋅
8

d
=
4κ2

d

Thus, (Z ′2) ≤
76κ2

d
.

Altogether,
1

∣Πlegal(l, u)∣
∑

t∶at∈H
∑

σ∈Πlegal(l,u)
⟨σ−1(at), θ̃⟩

2

≤ ϵ2 ⋅ (sκ2T (H;a) + T (H;a) ⋅ s(s − 1) ⋅ 76
κ2

d
)

< 77ϵ2sκ2T (H;a)

where the last inequality is by (s − 1) < d.

33

F.2.5 Proof of Lemma 9

Proof. We will use the following Stirling’s approximation for calculating the scale of Y .

Lemma 13. (Stirling’s approximation [32]) For x ≥ 1,
√
2πx(

x

e
)
x

e
1

12n+1 ≤ x! ≤
√
2πx(

x

e
)
x

e
1

12n

. To be more specific, there exists an absolute constant s0 = 10 such that for all x > s0,

x!
√
2πx (x

e
)
x ∈ (1,1.01)

From this lemma, we can derive the following estimation of the combination. For x, y > s0,

(
x+y
x
)

√
1
2π
(1
x
+ 1

y
)(

x+y
x
)x(

x+y
y
)y
∈ (

1

1.012
,
1.01

1
)

Now by definition, ∣Qa∣ = (
d−2s

d
2−2s+a

)(
2s
a
), and ∣Q′b∣ = (

d−s
d
2−s+b

)(
s
b
). For sufficiently large s > 4s0 and

d > s2 we have the following approximation

(
d − 2s

d
2
− 3

4
s + l
) ≥

1

1.012
×

¿
Á
ÁÀ

1

2π
(

1
d
2
− 3

4
s + l

+
1

d
2
− 5

4
s − l
)
⎛

⎝

d − 2s
d
2
− 3

4
s + l

⎞

⎠

d
2−

3
4 s+l
⎛

⎝

d − 2s
d
2
− 5

4
s − l

⎞

⎠

d
2−

5
4 s−l

=
1

1.012
×

¿
Á
ÁÀ

1

2π
(

1
d
2
− 3

4
s + l

+
1

d
2
− 5

4
s − l
)2d−2s

⎛

⎝
1 −

1
4
s + l

d
2
− 3

4
s + l

⎞

⎠

d
2−

3
4 s+l
⎛

⎝
1 +

1
4
s + l

d
2
− 5

4
s − l

⎞

⎠

d
2−

5
4 s−l

(
d − s

d
2
− 1

4
s + l
) ≤

1.01

1
×

¿
Á
ÁÀ

1

2π
(

1
d
2
− 1

4
s + l

+
1

d
2
− 3

4
s − l
)
⎛

⎝

d − s
d
2
− 1

4
s + l

⎞

⎠

d
2−

1
4 s+l
⎛

⎝

d − s
d
2
− 3

4
s − l

⎞

⎠

d
2−

3
4 s−l

=
1.01

1
×

¿
Á
ÁÀ

1

2π
(

1
d
2
− 1

4
s + l

+
1

d
2
− 3

4
s − l
)2d−s

⎛

⎝
1 −

1
4
s + l

d
2
− 1

4
s + l

⎞

⎠

d
2−

1
4 s+l
⎛

⎝
1 +

1
4
s + l

d
2
− 3

4
s − l

⎞

⎠

d
2−

3
4 s−l

From the Taylor’s expansion, one can achieve the following inequality.

Lemma 14. For all y > 2 and x > y2,

(1 − y
x
)x

e−y
∈ (e−2,1)

Proof.

(1 −
y

x
)
x
= exp(x ln(1 −

y

x
)) ≥ exp(x(−

y

x
)) exp

⎛

⎝
−

1

(1 − y
x
)2

×
y2

2x

⎞

⎠

(Taylor theorem with remainder)

≥ exp(−y)e−2 (e−a ≥ 1 − a, and x1/2 > y > 2)

Similarly,

(1 −
y

x
)
x
= exp(x ln(1 −

y

x
)) ≤ exp(x × (−

y

x
)) ≤ exp(−y) (lna ≤ a − 1)

34

Therefore,

(
d − 2s

d
2
− 3

4
s + l
) ≥

1

1.012
e−2 ×

¿
Á
ÁÀ

1

2π
(

1
d
2
− 3

4
s + l

+
1

d
2
− 5

4
s − l
)2d−2se−

1
4 s−le

1
4 s+l

(
d − s

d
2
− 1

4
s + l
) ≤

1.01

1
×

¿
Á
ÁÀ

1

2π
(

1
d
2
− 1

4
s + l

+
1

d
2
− 3

4
s − l
)2d−se−

1
4 s−le

1
4 s+l

and thus Y = minl∈[s/4]
∣Q 3

4
s−l
∣

∣Q′s
4
−l
∣ ≥ C2

−sminl∈[s/4]
(2s
3
4
s−l
)

(s
1
4
s−l
) where C = e−2(1

1.01
)3 1

4
is a universal

constant.

From the formula (n
k+1) = (

n
k
) × n−k

k+1 , one can check that minl∈[s4]
(2s
3
4
s−l
)

(s
1
4
s−l
) ≥

(2s3
4
s
)

(s
1
4
s
) ≈ C

′(2 × (8
5
)5)

1
4 s

where the last one is from Lemma 13 again and C ′ = 1
1.013

×
√

2
5

is another universal constant. In
short,

Y ≥ C ×C ′ × 2−s(2 × (
8

5
)
5
)

1
4 s ≥ C ×C ′ × (1.3)

1
4 s

where the last inequality is from 2 × (8
5
)5 = 20.97⋯ > 1.3 × 24 Therefore, we can conclude that

lnY = Ω(s).

F.2.6 Proof of Lemma 8

∣Rl∣ = (
d − 2s

d
2
− 3

4
s + l
)(
s
s
2

)(
s

s
4
− l
)

,

Q′1
4 s−l
= (

d − s
d
2
− s

4
+ l
)(

s
1
4
s − l
)

From the combinatorial formula, (d−s
d
2−

1
4 s+l
) = ∑

s
a=0 (

d−2s
d
2−

1
4 s+l−a

)(
s
a
). Now we will analyze the size of

f(a) ∶= (d−2s
d
2−

1
4 s+l−a

)(
s
a
) for each a. First, note that for any x ∈ N, (2x

y
) is increasing for y ∈ {0,1,⋯, x},

and decreasing for y ∈ {x,x + 1,⋯,2x}. Therefore, (d−2s
d
2−

1
4 s+l−a

) is an increasing function in a ≤
3
4
s − l and (s

a
) is also an increasing function in a ≤ s

2
. Therefore, f(a) is increasing function for

a ∈ {0,⋯, s/2}. By the similar logic, f(a) is a decreasing function for a ∈ { 3
4
s − l, s}. Now the

region we have to take care is s
2
≤ a ≤ 3

4
s − l. In this case,

(
d − 2s

d
2
− 1

4
s + l − a − 1

)/(
d − 2s

d
2
− 1

4
s + l − a

) =

d
2
− 1

4
s + l − a

d
2
− 7

4
s − l + a + 1

= −1 +
d − 2s + 1

d
2
− 7

4
s − l + a + 1

≤ −1 +
d − 2s + 1

d
2
− 7

4
s − 1

4
s + s

2
+ 1

(l ≤ 1
4
s and a ≥ s

2
)

= 1 +
s − 1

d
2
− 3

2
s + 1

≤ 1 +
s − 1
s2−s
2

=
s + 2

s
(d > s2 + 2s − 2)

and

(
s

a + 1
)/(

s

a
) ≤ 1 −

1
s
2
+ 1
=

s

s + 2

35

therefore
f(a + 1)

f(a)
≤
s + 2

s

s

s + 2
= 1

which means f(a) is a nonincreasing function with respect to a ∈ { s
2
,⋯, s}, and therefore

maxa∈[s] (
d−2s

d
2−

1
4 s+l−a

)(
s
a
) = (

d−2s
d
2−

3
4 s+l
)(

s
s
2
). Plus, by the similar calculation from above and using

the condition s > 5, we can show that f(0) < 1
s
f(1) < 1

s
f(s

2
) and f(s) < 1

s
f(s − 1) < 1

s
f(s

2
) which

means f(s
2
) > f(0) + f(s). Therefore, ∣Q′1

4 s−l
∣ = f(0) + f(s) +∑

s−1
a=1 f(a) ≤ sf(

s
2
) = s∣Rl∣

F.2.7 Scale of κ2 with respect to Cmin

Last thing we have to deal with is connecting κ2 to Cmin and H2
∗ .

Lemma 15. Cmin(H) ≥
κ2

2

Proof. By the maximality of Cmin(H), Cmin(H) ≥ λmin(Q(Unif(H))). If we prove that
λmin(Q(Unif(H))) ≥

κ2

2
, then the proof is done.

Let’s defineHd as

Hd =

⎧⎪⎪
⎨
⎪⎪⎩

a ∈ {−κ,κ}d ∣

RRRRRRRRRRRR

d

∑
i=1
ai

RRRRRRRRRRRR

≤ κ
√
2d ln(2d)

⎫⎪⎪
⎬
⎪⎪⎭

It is the set of first d coordinate vectors ofH.

We can express Q(Unif(H)) in terms of Q(Unif(Hd)) as follows

Q(Unif(H)) = [
Q(Unif(Hd)) 0⃗

0⃗⊺ 1
]

Therefore, the proof boils down to calculate Q(Unif(Hd)). We can connect this matrix to
Q(Unif({−κ,κ}d)) by the following method

Q(Unif({−κ,κ}d)) = Q(Unif(Hd)) × PA∼Unif(Hd)(A ∈Hd)

+Q(Unif({−κ,κ}d/Hd)) × PA∼Unif({−κ,κ}d)(A ∉Hd)

Now, since Rademacher is 1 sub-Gaussian random variable, ∑n
i=1 ai is κ

√
d sub-Gaussian random

variable when a ∼ Unif({−κ,κ}). Therefore,

PA∼Unif({−κ,κ}d)(A ∉Hd) = PA∼Unif({−κ,κ}d)(∣
d

∑
i=1
Ai∣ ≥ κ

√
2d ln(2d)) ≤

1

2d

The last inequality is by the traditional Chernoff method [23]. Therefore, we can rewrite
Q(Unif(Hd)) as

Q(Unif(Hd)) ⪰ PA∼Unif({−κ,κ}d)(A ∈Hd)Q(Unif(Hd))

⪰ Q(Unif({−κ,κ}d)) −Q(Unif({−κ,κ}d/Hd))PA∼Unif({−κ,κ}d)(A ∉Hd)

⪰ Q(Unif({−κ,κ}d)) −Q(Unif({−κ,κ}d/Hd))
1

2d

Therefore, (Existing results about this positive definite matrix analysis)

λmin(Q(Unif(Hd))) ≥ λmin(Q(Unif({−κ,κ}
d
)) −Q(Unif({−κ,κ}d/Hd))

1

2d
)

≥ λmin(Q(Unif({−κ,κ}
d
))) − λmax(Q(Unif({−κ,κ}

d
/Hd))

1

2d
)

Since every element in {−κ,κ} has ℓ2-norm
√
dκ,

36

λmax(Q(Unif({−κ,κ}
d
/Hd)) = max

v∈Sd−1
v⊺ ∑

a∈{−κ,κ}d/Hd

1

∣{−κ,κ}d/Hd∣
aa⊺v

= max
v∈Sd−1

∑
a∈{−κ,κ}d/Hd

1

∣{−κ,κ}d/Hd∣
(a⊺v)2

≤ max
v∈Sd−1

∑
a∈{−κ,κ}d/Hd

dκ2

∣{−κ,κ}d/Hd∣
= dκ2

and by simple symmetry one can calculate λmin(Q(Unif({−κ,κ}
d))) = κ2. Therefore,

λmin(Q(Unif(Hd))) ≥ κ
2
− dκ2

1

2d
=
κ2

2

G Experiment details

• Case 1 - ℓ1 estimation error experiment
– θ = −e1 + ei, i ∈ {2,⋯, d} chosen uniformly random before the start of the experiment.
– Dimension d = 10, sparsity s = 2
– Action set A = {e1 + 1√

d
ei∣i = 2,⋯, d} ∪ {

1√
d
e1}

– T = 1000,2000,⋯,10000

– σ = 0.1

– Repetition: 30 times for each exploration time.
• Case 1 - bandit experiment

– θ = e1 + ei, i ∈ {2,⋯, d} chosen uniformly random before the start of the experiment.
– Dimension d = 10, sparsity s = 2
– Action set A = {e1 + 1√

d
ei∣i = 2,⋯, d} ∪ {

1√
d
e1}

– T = 400000

– σ = 0.1

– Repetition: 30 times
• Case 2 - ℓ1 estimation error experiment

– θ = ei + ej , i, j ∈ [d] chosen uniformly random before the start of the experiment.
– Dimension d = 30, sparsity s = 2
– Action set A: 90 Uniform random vectors over Sd−1 before the start of the round, where

Sd−1 = {v ∈ Rd∣∥v∥2 = 1}

– T = 1000,2000,⋯,10000

– σ = 0.1

– Repetition: 30 times for each exploration time.
• Case 2 - bandit experiment

– θ = ei + ej , i, j ∈ [d] chosen uniformly random before the start of the experiment.
– Dimension d = 30, sparsity s = 2
– Action set A: 90 Uniform random vectors over Sd−1 before the start of the round.
– T = 10000

– σ = 0.1

– Repetition: 30 times for each exploration time.

37

	Introduction
	Problem Definition and Preliminaries
	Improved Linear Regression and Experimental Design for Sparse Models
	Improved Sparse Linear Bandits using Warm-PopArt
	Matching lower bound
	Experimental results
	Conclusion
	 Appendix
	Related work
	Catoni's Estimator
	Proofs for PopArt and Warm-PopArt
	Proof for Proposition 1
	Full version of Corollary 1 and its proof

	Proof of Proposition 2 and Proposition 3
	The case of when the equality in Eq. (9 holds
	Prove that the optimal satisfies
	Calculating
	Calculating
	Lower bound of 102(Q(),s)

	Proofs for Sparse Linear Bandits
	Proof of Theorem 4

	Proof of Lower Bound
	Algorithmic symmetrization: reducing lower bounds for general algorithms to symmetric algorithms
	Deferred Proofs

	Lower bound against symmetric algorithms
	Count the number of mistake
	Proof of Proposition 4
	Proof of the Claim 1
	Deferred proof for Claim 1
	Proof of Lemma 9
	Proof of Lemma 8
	Scale of 2 with respect to Cmin

	Experiment details

