Distributed Distillation for On-Device Learning

Part of Advances in Neural Information Processing Systems 33 (NeurIPS 2020)

AuthorFeedback Bibtex MetaReview Paper Review Supplemental


Ilai Bistritz, Ariana Mann, Nicholas Bambos


On-device learning promises collaborative training of machine learning models across edge devices without the sharing of user data. In state-of-the-art on-device learning algorithms, devices communicate their model weights over a decentralized communication network. Transmitting model weights requires huge communication overhead and means only devices with identical model architectures can be included. To overcome these limitations, we introduce a distributed distillation algorithm where devices communicate and learn from soft-decision (softmax) outputs, which are inherently architecture-agnostic and scale only with the number of classes. The communicated soft-decisions are each model's outputs on a public, unlabeled reference dataset, which serves as a common vocabulary between devices. We prove that our algorithm converges with probability 1 to a stationary point where all devices in the communication network distill the entire network's knowledge on the reference data, regardless of their local connections. Our analysis assumes smooth loss functions, which can be non-convex. Simulations support our theoretical findings and show that even a naive implementation of our algorithm significantly reduces the communication overhead while achieving an overall comparable performance to state-of-the-art, depending on the regime. By requiring little communication overhead and allowing for cross-architecture training, we remove two main obstacles to scaling on-device learning.