
7 Proof of Lemma 4

Proof. Let b = |Srt |, which is constant for all t. Define the total disagreement error as

φ (zt) ,
b

Q

∑
x∈Dr

∥∥∥(I − W̃) zt (x)
∥∥∥2

. (16)

Let λN−1 = λN−1

(
WTW

)
. Using (10) we can write

φ (zt+1) =
(a)

E

∑
x∈Sr

t

∥∥∥(I − W̃) zt+1 (x)
∥∥∥2

| Ft

 .

=E

∑
x∈Sr

t

∥∥∥(I − W̃)(W̃zt (x)− ηtϕt (x)
)∥∥∥2

| Ft


≤
(b)

E


∑
x∈Sr

t

∥∥∥W̃ (
I − W̃

)
zt (x)

∥∥∥2

︸ ︷︷ ︸
A2

| Ft


+ 2ηtE


∑
x∈Sr

t

∥∥∥W̃ (
I − W̃

)
zt (x)

∥∥∥︸ ︷︷ ︸
A

∥∥∥(I − W̃)ϕt (x)
∥∥∥︸ ︷︷ ︸

B

| Ft


+ η2

tE


∑
x∈Sr

t

∥∥∥(I − W̃)ϕt (x)
∥∥∥2

︸ ︷︷ ︸
B2

| Ft


≤
(c)

E

λN−1

∑
x∈Sr

t

∥∥∥(I − W̃) zt (x)
∥∥∥2

| Ft


+ 4
√
λN−1D0ηtE

∑
x∈Sr

t

∥∥∥(I − W̃) zt (x)
∥∥∥ | Ft

+ 4bη2
tD0

=λN−1φ (zt) + 4
√
λN−1D0ηt

b

Q

∑
x∈Dr

∥∥∥(I − W̃) zt (x)
∥∥∥+ 4bη2

tD0

≤
(d)
λN−1φ (zt) + 4ηt

√
λN−1D0b

√
φ (zt) + 4bη2

tD0 (17)

where (a) follows since given Ft, the only randomness left is in Srt , which includes each x ∈ Dr
with probability b

Q . Inequality (b) is Cauchy-Schwartz and W̃
(
I − W̃

)
=
(
I − W̃

)
W̃ . Inequality

(c) uses part 3 of Lemma 7 on the A terms in (17) and part 1 of Lemma 7 on the B terms in (17).
It also uses ‖ϕt (x)‖2 ≤ D0 where D0 is a constant specified in Lemma 5. Inequality (d) uses(∑

x∈Dr

∥∥∥(I − W̃) zt (x)
∥∥∥)2

≤ Q
∑
x∈Dr

∥∥∥(I − W̃) zt (x)
∥∥∥2

which follows from Lemma 8 for
scalars.

Taking an expectation on both sides of (17) we obtain

E {φ (zt+1)} ≤ λN−1E {φ (zt)}+ 4ηt
√
λN−1D0bE

{√
φ (zt)

}
+ 4bD0η

2
t

≤ λN−1E {φ (zt)}+ 4ηt
√
λN−1D0bE {φ (zt)}+ 4bD0η

2
t . (18)

We next prove by induction that for all t ≥ 1

E {φ (zt+1)} ≤ Aη2
t (19)
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for some constant A > 0 that we specify next.

Choose a constant A0 such that

A0 − 8
√
λN−1D0bA0 − 4bD0

A0λN−1
> 1 =⇒ (1− λN−1)A0 − 8

√
λN−1bD0

√
A0 − 4bD0 > 0

=⇒
√
A0 > 2

√
bD0

2
√
λN−1 +

√
3λN−1 + 1

1− λN−1

(20)

where we also used that λN−1 < 1, from Lemma 7.

Define T0 to be large enough such that ηt−1 ≤ 2ηt and ηt−1 ≤
√

A0−8
√
λN−1D0bA0−4bD0

A0λN−1
ηt for all

t ≥ T0. Such large enough T0 exists since lim
t→∞

ηt+1

ηt
exists, and it must be equal to one otherwise the

ratio test [43] will either say that
∑∞
t=1 ηt =∞ converges or that

∑∞
t=1 η

2
t <∞ does not converge.

Then we pick A = max

{
max

1<t≤T0

1
η2t−1

E {φ (zt)} , A0

}
which is constant with respect to t. Hence

for all t ≤ T0 the induction hypothesis (19) holds.

Now assume that (19) holds for some t ≥ T0. Plugging this in (18) completes the induction:

E {φ (zt+1)} ≤ AλN−1η
2
t−1 + 4

√
λN−1D0bAηtηt−1 + 4η2

t bD0

≤
(a)

(
A− 8

√
λN−1D0bA− 4bD0

)
η2
t + 8

√
λN−1D0bAη

2
t + 4η2

t bD0

≤ Aη2
t (21)

where (a) follows for all t ≥ T0, since then A ≥ A0, so ηt−1 ≤
√

A−8
√
λN−1D0bA−4bD0

AλN−1
ηt and also

ηt−1 ≤ 2ηt.

Using (19), we obtain that for any ε > 0

∞∑
t=1

Pr (φ (zt) ≥ ε) ≤ 1 +

∞∑
t=2

E {φ (zt)}
ε

≤ 1 +
A

ε

∞∑
t=1

η2
t <∞ (22)

so by the Borel-Cantelli Lemma, for almost all ω ∈ Ω, where Ω is the probability space, there
exists T (ω) such that φ (zt) ≤ ε for every t > T (ω). Since φ (zt) is non-negative, this means that
lim
t→∞

φ (zt) = 0 with probability 1. Let λ2 = λ2

(
(I −W )

T
(I −W )

)
. Then

φ (zt) =
b

Q

∑
x∈Dr

∥∥∥(I − W̃) zt (x)
∥∥∥2

≥
(a)

λ2
b

Q

∑
x∈Dr

‖zt (x)− 1N ⊗ z̄t (x)‖2 = λ2
b

Q

∑
x∈Dr

N∑
n=1

‖znt (x)− z̄t (x)‖2 (23)

where (a) follows from part 2 of Lemma 7. We conclude that since φ (zt)→ 0 with probability 1 and
λ2 > 0 then

∑
x∈Dr

∑N
n=1 ‖znt (x)− z̄t (x)‖2 → 0 with probability 1. Moreover, (19) and (23)

show that
∑N
n=1

∑
x∈Dr

E
{
‖znt (x)− z̄t (x)‖2

}
≤ Cη2

t−1 for some constant C > 0.
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8 Proof of Lemma 5

Proof. Since θnt , z
n
t are Ft measurable, we have

E {gnt | Ft} =∑
x̃∈Dn

∇L (s (θnt , x̃) ,y (x̃)) +
2β

N

∑
x∈Dr

(∇s (θnt , x))
T

(s (θnt , x)− znt (x)) = ∇θnΦ (θt, z
n
t ) .

(24)

Moreover,

‖gnt ‖
2 ≤

(a)

M2
n

|Spt |
2

∥∥∥∥∥∥
∑
x̃∈Sp

t

∇L (s (θnt , x̃) ,y (x̃))

∥∥∥∥∥∥
2

+
4β2Q2

N2 |Srt |
2

∥∥∥∥∥∥
∑
x∈Sr

t

(∇s (θnt , x))
T

(s (θnt , x)− znt (x))

∥∥∥∥∥∥
2

+

4β

N

MnQ

|Spt | |Srt |

∥∥∥∥∥∥
∑
x̃∈Sp

t

∇L (s (θnt , x̃) ,y (x̃))

∥∥∥∥∥∥
∥∥∥∥∥∥
∑
x∈Sr

t

(∇s (θnt , x))
T

(s (θnt , x)− znt (x))

∥∥∥∥∥∥ ≤(b)
M2
n

|Spt |
∑
x̃∈Sp

t

‖∇L (s (θnt , x̃) ,y (x̃))‖2 +
4β2Q2

N2 |Srt |
∑
x∈Sr

t

∥∥∥(∇s (θnt , x))
T

(s (θnt , x)− znt (x))
∥∥∥2

+

4β

N

MnQ

|Spt | |Srt |
∑
x̃∈Sp

t

‖∇L (s (θnt , x̃) ,y (x̃))‖
∑
x∈Sr

t

∥∥∥(∇s (θnt , x))
T

(s (θnt , x)− znt (x))
∥∥∥ ≤

(c)

M2
nL

2
a +

4
√

2β

N
MnLaLsQ+

8β2

N2
L2
sQ

2 (25)

where (a) uses Cauchy-Schwarz, (b) uses the triangle inequality and Lemma 8. Inequality (c) uses
the Lipschitz continuity of L (s (θnt , x̃) ,y (x̃)) (see Lemma 10) with some parameter La. Inequality
(c) also uses that s (θnt , x)− znt (x) is a difference between two probability vectors, after using that
for all y

‖∇s (θnt , x)y‖2 ≤
(a)
‖∇s (θnt , x)‖2 ‖y‖2 ≤

(b)
L2
s ‖y‖

2 (26)

where (a) follows from the submultiplicativy of the spectral norm, and (b) since s (θnt , x) is Lipschitz
continuous with parameter Ls (and continuously differentiable since the gradients are Lipschitz
continuous).

For the second part of the lemma, we readily obtain that for each x ∈ Dr

E

{
1

N

N∑
n=1

ϕnt (x) | Ft

}
=

2β

N

N∑
n=1

(znt (x)− s (θnt , x)) = ∇z̄(x)Φ (θt, z̄t) (27)

and that for every n and x ∈ Dr
‖ϕnt (x)‖2 = 4β2 ‖s (θnt , x)− znt (x)‖2 ≤

(a)
8β2 (28)

where (a) uses that s (θnt , x)− znt (x) is the difference between two probability vectors.

9 Proof of Lemma 6

Proof. For each n

∇θnh (θ, z̄) = 2
∑
x∈Dr

(∇s (θn, x))
T

(s (θn, x)− z̄ (x)) (29)

and

∇z̄(x)h (θ, z̄) = 2

N∑
n=1

(z̄ (x)− s (θn, x)) . (30)
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Then

∥∥∥(∇s (θn, x))
T

(s (θn, x)− z̄ (x))− (∇s (νn, x))
T

(s (νn, x)− ȳ (x))
∥∥∥2

≤
(a)

3
∥∥∥(∇s (θn, x))

T
(s (θn, x)− z̄ (x))− (∇s (θn, x))

T
(s (νn, x)− z̄ (x))

∥∥∥2

+

3
∥∥∥(∇s (θn, x))

T
(s (νn, x)− z̄ (x))− (∇s (θn, x))

T
(s (νn, x)− ȳ (x))

∥∥∥2

+

3
∥∥∥(∇s (θn, x))

T
(s (νn, x)− ȳ (x))− (∇s (νn, x))

T
(s (νn, x)− ȳ (x))

∥∥∥2

≤
(b)

3L2
s ‖s (θn, x)− s (νn, x)‖2 + 3L2

s ‖z̄ (x)− ȳ (x)‖2 +

3
∥∥∥(∇s (θn, x)−∇s (νn, x))

T
(s (νn, x)− ȳ (x))

∥∥∥2

≤
(c)

3
(
L4
s + 2L2

g

)
‖θn − νn‖2 + 3L2

s ‖z̄ (x)− ȳ (x)‖2 (31)

where (a) uses Lemma 8 for a sum of three terms and (b) follows since ‖∇s (θn, x)‖2 ≤ L2
s .

Inequality (c) follows from the Lipschitz continuity of s (θn, x) and ∇s (θn, x), with parameters Ls
and Lg , and since for the spectral norm of∇s (θn, x)−∇s (νn, x) we have

∥∥∥(∇s (θn, x)−∇s (νn, x))
T

(s (νn, x)− ȳ (x))
∥∥∥2

≤

‖∇s (θn, x)−∇s (νn, x)‖2 ‖s (νn, x)− ȳ (x)‖2 ≤ 2L2
g ‖θ

n − νn‖2 . (32)

where ‖s (νn, x)− ȳ (x)‖2 ≤ 2 as a difference of probability vectors.

Hence by using Lemma 8 on (29)

‖∇θnh (θ, z̄)−∇νnh (ν, ȳ)‖2 ≤ 12Q2
(
L4
s + 2L2

g

)
‖θn − νn‖2 + 12QL2

s ‖z̄ − ȳ‖
2
. (33)

Next we obtain

‖∇z̄h (θ, z̄)−∇ȳh (ν, ȳ)‖2 = 4
∑
x∈Dr

∥∥∥∥∥
N∑
n=1

(z̄ (x)− s (θn, x))− (ȳ (x)− s (νn, x))

∥∥∥∥∥
2

≤
(a)

8N
∑
x∈Dr

(
N∑
n=1

‖s (θn, x)− s (νn, x)‖2 +

N∑
n=1

‖z̄ (x)− ȳ (x)‖2
)
≤

8L2
sNQ ‖θ − ν‖

2
+ 8N2 ‖z̄ − ȳ‖2 (34)

where (a) uses Lemma 8 with 2N terms and (b) uses the Ls-Lipschitz continuity of s (θn, x). We
conclude by gathering all the components of the concatenated vectors (θ, z) and (ν,y) together:

‖∇h (θ, z̄)−∇h (ν, ȳ)‖2 =

N∑
n=1

‖∇θnh (θ, z̄)−∇νnh (ν, ȳ)‖2 + ‖∇z̄h (θ, z̄)−∇ȳh (ν, ȳ)‖2 ≤(
12Q2L4

s + 24Q2L2
g + 8L2

sNQ
)
‖θ − ν‖2 +

(
12NQL2

s + 8N2
)
‖z̄ − ȳ‖2 ≤

max
{

12Q2L4
s + 24Q2L2

g + 8L2
sNQ, 12NQL2

s + 8N2
}
‖(θ, z̄)− (ν, ȳ)‖2 . (35)
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10 Proof of Theorem 3

Proof. For all x ∈ Dr, define ϕ̄t (x) = 1
N

∑N
n=1ϕ

n
t (x). Let a =

[
1
N , . . . ,

1
N

]
be the averaging

vector of size N , such that z̄t (x) = (a⊗ IK) zt (x). Then from (10) we have

z̄t+1 (x) =
1

N

N∑
n=1

znt+1 (x) = (a⊗ IK) (W ⊗ IK) zt (x)− ηt
1

N

N∑
n=1

ϕnt (x) =
(a)

(aW ⊗ IK) zt (x)− ηt
1

N

N∑
n=1

ϕnt (x) =
(b)

(a⊗ IK) zt (x)− ηt
1

N

N∑
n=1

ϕnt (x) =
1

N

N∑
n=1

znt (x)− ηt
1

N

N∑
n=1

ϕnt (x) (36)

where (a) follows since (A⊗B) (C ⊗D) = AC ⊗ BD and (b) since aW = a, using that W is
doubly stochastic.

From Lemma 5 we have for all x ∈ Dr

E {ϕ̄t (x) | Ft} =
1

N

N∑
n=1

E {ϕnt (x) | Ft} = ∇z̄(x)Φ (θt, z̄t) . (37)

Lemma 5 also gives,

E {gnt | Ft} = ∇θnΦ (θt, z
n
t ) =

∇θnΦ (θt, z̄t) + (∇θnΦ (θt, z
n
t )−∇θnΦ (θt, z̄t)) , ∇θnΦ (θt, z̄t) + eθn,t (38)

and
‖eθn,t‖2 ≤ ‖∇θnΦ (θt, z

n
t )−∇θnΦ (θt, z̄t)‖2 ≤

(a)
L2 ‖znt − z̄t‖

2 (39)

where (a) follows from Lemma 6, that implies that ∇Φ (θ, z̄) is Lipschitz continuous with pa-
rameter L as a sum of two Lipschitz continuous functions. Let eθ,t =

[
eθ1,t, ..., eθN ,t

]
and

et = [eθ,t,0] ∈ R
∑N

n=1 pn+KQ. Let gt =
[
g1
t , ..., g

N
t

]
and ϕ̄t = [ϕ̄t (x1) , ...., ϕ̄t (xQ)]

and recall that ∇θΦ (θt, z̄t) = [∇θ1Φ (θt, z̄t) , ....,∇θNΦ (θt, z̄t)], ∇z̄Φ (θt, z̄t) =[
∇z̄(x1)Φ (θt, z̄t) , ...,∇z̄(xQ)Φ (θt, z̄t)

]
and ∇Φ (θt, z̄t) = [∇θΦ (θt, z̄t) ,∇z̄Φ (θt, z̄t)]. Then,

for all t, we have

E {Φ (θt+1, z̄t+1) | Ft} =
(a)

E {Φ (θt − ηtgt, z̄t − ηtϕ̄t) | Ft} ≤
(b)

Φ (θt, z̄t)− ηt (∇θΦ (θt, z̄t))
T E {gt | Ft} − ηt (∇z̄Φ (θt, z̄t))

T E {ϕ̄t | Ft}

+
η2
t

2
LE
{
‖gt‖

2
+ ‖ϕ̄t‖

2 | Ft
}
≤
(c)

Φ (θt, z̄t)− ηt ‖∇Φ (θt, z̄t)‖2 − ηt (∇Φ (θt, z̄t))
T
et + η2

tLCg ≤
(d)

Φ (θt, z̄t)− ηt ‖∇Φ (θt, z̄t)‖2 + ηt ‖∇Φ (θt, z̄t)‖ ‖et‖+ η2
tLCg (40)

where (a) follows from (5) and (36), (b) uses the Lipschitz continuity of∇Φ (θt, z̄t), so from Lemma
9

Φ (y) ≤ Φ (x) + (∇Φ (x))
T

(y − x) +
1

2
L ‖y − x‖2 (41)

and also that Φ (θt, z̄t) is Ft-measurable. Inequality (c) uses (37) and (38) together with Lemma 5
with some Cg > 0, and inequality (d) is Cauchy-Schwarz.

Next, we want to apply the Robbins-Siegmund Theorem [44] on (40), with zt = Φ (θt, z̄t), βt = 0,
ξt = ηt ‖∇Φ (θt, z̄t)‖ ‖et‖ + η2

tLCg and ζt = ηt ‖∇Φ (θt, z̄t)‖2 (using the notation in [44]). To
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that end, we show that for some constant A > 0

E

{ ∞∑
t=1

ηt ‖et‖

}
≤
(a)

∞∑
t=1

ηtE {‖et‖} ≤
∞∑
t=1

ηt

√
E
{
‖et‖2

}
≤
(b)

∞∑
t=1

ηtL

√√√√ N∑
n=1

E
{
‖znt − z̄t‖

2
}
≤
(c)
A

∞∑
t=1

ηtηt−1 <
(d)
∞ (42)

where (a) follows from Fatou’s Lemma [45], (b) from (39) and (c) from Lemma 4. Inequality
(d) follows from the limit comparison test [43] since we must have ηtηt−1

η2t
= ηt−1

ηt
→ 1, and∑∞

t=1 η
2
t <∞. This follows since lim

t→∞
ηt+1

ηt
exists, and it must be equal to one otherwise the ratio

test [43] will either say that
∑∞
t=1 ηt =∞ converges or that

∑∞
t=1 η

2
t <∞ does not converge.

We conclude that
∑∞
t=1 ηt ‖et‖ < ∞ with probability 1. From (12) and (13) and the Lipschitz

continuity of Ln (θnt ) and s (θnt , x) we conclude that ‖∇Φ (θt, z̄t)‖ is bounded. Then, since∑∞
t=1 η

2
t <∞ we have

∑∞
t=1 βt <∞ and

∑∞
t=1 ξt <∞ so [44] implies that with probability 1

∞∑
t=1

ηt ‖∇Φ (θt, z̄t)‖2 <∞. (43)

Now note that for some constant Dg > 0

‖∇Φ (θt+1, z̄t+1)‖2 − ‖∇Φ (θt, z̄t)‖2 =

(‖∇Φ (θt+1, z̄t+1)‖ − ‖∇Φ (θt, z̄t)‖) (‖∇Φ (θt+1, z̄t+1)‖+ ‖∇Φ (θt, z̄t)‖) ≤
2L (‖∇Φ (θt+1, z̄t+1)‖ − ‖∇Φ (θt, z̄t)‖) ≤ 2L (‖∇Φ (θt+1, z̄t+1)−∇Φ (θt, z̄t)‖) ≤

2L2 ‖(θt+1, z̄t+1)− (θt, z̄t)‖ = 2L2 ‖(ηtgt, ηtϕ̄t)‖ ≤ Dgηt. (44)

Combining (43) and (44), [46, Proposition 2] with αk = ηk and βk = ‖∇Φ (θk, z̄k)‖2 confirms that
‖∇Φ (θk, z̄k)‖ → 0 with probability 1, so

∥∥∇z̄(x)Φ (θt, z̄t)
∥∥→ 0 and ‖∇θnΦ (θt, z̄t)‖ → 0 with

probability 1 as well, for each x ∈ Dr and n. Therefore, for each x ∈ Dr and each n∥∥∇z̄(x)Φ (θt, z̄t)
∥∥ = 2β

∥∥∥∥∥z̄t (x)− 1

N

N∑
n=1

s (θnt , x)

∥∥∥∥∥→ 0. (45)

Let s̄ (θt, x) , 1
N

∑N
n=1 s (θnt , x). Hence, we conclude that for each n∥∥∥∥∥∇θn

(
Ln (θnt ) +

β

N − 1

∑
x∈Dr

‖s̄ (θt, x)− s (θnt , x)‖2
)∥∥∥∥∥ =∥∥∥∥∥∇Ln (θnt ) +

2β

N

∑
x∈Dr

(∇s (θnt , x))
T

(s (θnt , x)− s̄ (θt, x))

∥∥∥∥∥ ≤∥∥∥∥∥2β

N

∑
x∈Dr

(∇s (θnt , x))
T

((s (θnt , x)− s̄ (θt, x))− (s (θnt , x)− z̄t (x)))

∥∥∥∥∥+∥∥∥∥∥∇Ln (θnt ) +
2β

N

∑
x∈Dr

(∇s (θnt , x))
T

(s (θnt , x)− z̄t (x))

∥∥∥∥∥ ≤(a)

2β

N

∑
x∈Dr

Ls ‖z̄t (x)− s̄ (θt, x)‖+ ‖∇θnΦ (θt, z̄t)‖ → 0 (46)

where (a) follows from the triangle inequality and the Ls−Lipschitz continuity of s (θnt , x).

11 Auxiliary Lemmas

The next lemma characterizes the spectral properties of the disagreement matrix, used in Lemma 4.
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Lemma 7. Let W̃ = W ⊗ IK , where IK is the identity matrix of size K. Let λi(A) be the i-th
largest eigenvalue of A. Then for every v =

[
v1, ...,vN

]
∈ RKN such that vn ∈ RK for each n:

1.
∥∥∥(I − W̃)v∥∥∥2

≤ 4 ‖v‖2.

2.
∥∥∥(I − W̃)v∥∥∥2

≥ λ2

(
(I −W )

T
(I −W )

)∥∥∥v − 1N ⊗ 1
N

∑N
m=1 v

m
∥∥∥2

and

λ2

(
(I −W )

T
(I −W )

)
> 0.

3.
∥∥∥W̃ (

I − W̃
)
v
∥∥∥2

≤ λN−1

(
WTW

) ∥∥∥(I − W̃)v∥∥∥2

and λN−1

(
WTW

)
< 1.

Proof. The sum of each row in the non-negative matrix W + WT is 2 since W and WT are
stochastic. Furthermore, W +WT is an irreducible matrix since G is strongly connected. Hence,
the Perron-Frobenius Theorem [47, Theorem 8.4.4, Page 534] yields λmin

(
WT +W

)
≥ −2. Since

WTW1 = WT1 = 1, WTW is also a stochastic matrix. Let w̃n,m be an element of WTW , then

w̃n,m =
N∑
i=1

wn,iwm,i ≥ wn,mwm,m (47)

so if wn,n > 0 for all n, then w̃n,m > 0 if wn,m > 0. Hence, WTW is also irreducible and the
Perron-Frobenius Theorem yields λmax

(
WTW

)
= 1. Then we get from the Rayleigh quotient that

λmax

(
(I −W )

T
(I −W )

)
= max

v 6=0

vT (I −W )
T

(I −W )v

vTv
≤

1−min
v 6=0

vT
(
W +WT

)
v

vTv
+ max
v 6=0

vTWTWv

vTv
≤ 4 (48)

which shows that λmax

((
IKN − W̃

)T (
IKN − W̃

))
≤ 4 since the singular values of IKN − W̃

are that of I −W , each with multiplicity K. This proves part 1.

Since W is a stochastic matrix and G is strongly connected, then the Perron-Frobenius The-
orem states that λmax (W ) = 1 with eigenspace {α1 |α ∈ R}. Hence λmin (I −W ) = 0

with eigenspace {α1 |α ∈ R}. Then the null-space of IKN − W̃ has dimension K, and we
can check it is span {1N ⊗ ei | 1 ≤ i ≤ K} where ei is a standard basis vector of RK , sim-
ply because W̃ (1N ⊗ ei) = 1N ⊗ ei for each 1 ≤ i ≤ K. Let u1, ...,uKN be the

orthogonal sorted eigenvectors of the symmetric
(
IKN − W̃

)T (
IKN − W̃

)
. Note that if(

IKN − W̃
)T (

IKN − W̃
)
v = 0 then

∥∥∥(IKN − W̃)v∥∥∥ = 0 so
(
IKN − W̃

)
v = 0. Hence

the null-space of
(
IKN − W̃

)T (
IKN − W̃

)
, spanned by u1, ...,uK , is that of IKN − W̃ , which is

span {1N ⊗ ei | 1 ≤ i ≤ K}. Since
〈
1N ⊗ ei,v − 1N ⊗ 1

N

∑N
m=1 v

m
〉

= 0 for every 1 ≤ i ≤ K

(sum of i-th coordinates is zero), then v − 1N ⊗ 1
N

∑N
m=1 v

m ∈ span {uK+1, ...,uKN} ,

which gives part 2 since
(
IKN − W̃

)
v =

(
IKN − W̃

)(
v − 1N ⊗ 1

N

∑N
m=1 v

m
)

, which fol-
lows from ((I −W )⊗ IK) (1N ⊗ v) = (I −W ) 1N ⊗ v = 0 (the mixed-product property and
(I −W ) 1N = 0).

Now let b1, ..., bKN be the orthogonal sorted eigenvectors of the symmetric W̃T W̃ . From Perron-
Frobenius Theorem, the eigenspace of λmax

(
WTW

)
= 1 is {α1 |α ∈ R}. Hence W̃ = W⊗IK has

the singular value λmax

(
WTW

)
= 1 with multiplicityK. Again we can check that the eigenspace of

λmax

(
WTW

)
= 1 is span {1N ⊗ ei | 1 ≤ i ≤ K}, simply because W̃T W̃ (1N ⊗ ei) = 1N ⊗ ei

for each 1 ≤ i ≤ K. Since
〈
1N ⊗ ei,

(
IKN − W̃

)
v
〉

= vT
(
IKN − W̃T

)
(1N ⊗ ei) = 0 for

every 1 ≤ i ≤ K, we have
(
IKN − W̃

)
v ∈ span

{
b1, ..., bK(N−1)

}
, which gives part 3.
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The next simple lemma is used in many of our proofs.

Lemma 8. For every n > 0 we have ‖
∑n
i=1 yi‖

2 ≤ n
∑n
i=1 ‖yi‖

2.

Proof. We prove this result by induction on n. For n = 1 it is trivial. Now assume that the inequality
holds for all l ≤ n− 1. Then∥∥∥∥∥

n∑
i=1

yi

∥∥∥∥∥
2

=

∥∥∥∥∥∥∥
bn

2 c∑
i=1

yi +

n∑
i=bn

2 c+1

yi

∥∥∥∥∥∥∥
2

≤
(a)∥∥∥∥∥∥∥

bn
2 c∑
i=1

yi

∥∥∥∥∥∥∥
2

+ 2

∥∥∥∥∥∥∥
bn

2 c∑
i=1

yi

∥∥∥∥∥∥∥
∥∥∥∥∥∥∥

n∑
i=bn

2 c+1

yi

∥∥∥∥∥∥∥+

∥∥∥∥∥∥∥
n∑

i=bn
2 c+1

yi

∥∥∥∥∥∥∥
2

≤
(b)

2

∥∥∥∥∥∥∥
bn

2 c∑
i=1

yi

∥∥∥∥∥∥∥
2

+ 2

∥∥∥∥∥∥∥
n∑

i=bn
2 c+1

yi

∥∥∥∥∥∥∥
2

≤
(c)

2
⌊n

2

⌋ bn
2 c∑
i=1

‖yi‖
2

+ 2
(
n−

⌊n
2

⌋) n∑
i=bn

2 c+1

‖yi‖
2

= n

bn
2 c∑
i=1

‖yi‖
2

+ n

n∑
i=bn

2 c+1

‖yi‖
2

+
(
n− 2

⌊n
2

⌋) n∑
i=bn

2 c+1

‖yi‖
2 −
bn

2 c∑
i=1

‖yi‖
2

 ≤
(d)

n

n∑
i=1

‖yi‖
2 (49)

where (a) follows from Cauchy-Schwarz, (b) since (x− y)
2 ≥ 0 and (c) from the induction hypothe-

sis. Inequality (d) assumes that without loss of generality,
∑bn

2 c
i=1 ‖yi‖

2 ≥
∑n
i=bn

2 c+1 ‖yi‖
2.

The next Lemma is a well known bound for functions with Lipschitz gradients. We provide the proof
here for completeness.
Lemma 9. If Φ : Rd → R has Lipschitz continuous gradients with parameter L, then for every
x, y ∈ Rd

Φ (y) ≤ Φ (x) + (∇Φ (x))
T

(y − x) +
1

2
L ‖y − x‖2 . (50)

Proof. By Cauchy-Schwartz

(∇Φ (y)−∇Φ (x))
T

(y − x) ≤ ‖∇Φ (y)−∇Φ (x)‖ ‖y − x‖ ≤ L ‖y − x‖2 . (51)

Now define g (x) = L
2 ‖x‖

2 − Φ (x), then

(∇g (y)−∇g (x))
T

(y − x) = L ‖y − x‖2 − (∇Φ (y)−∇Φ (x))
T

(y − x) ≥ 0 (52)
so g (x) is convex, as a differentiable function. Then

g (y) ≥ g (x) + (∇g (x))
T

(y − x) (53)
which is just

L

2
‖y‖2 − Φ (y) ≥ L

2
‖x‖2 − Φ (x) + (Lx−∇Φ (x))

T
(y − x) =⇒

L

2
‖y‖2 +

L

2
‖x‖2 − LxTy + Φ (x) + (∇Φ (x))

T
(y − x) ≥ Φ (y) =⇒

Φ (y) ≤ Φ (x) + (∇Φ (x))
T

(y − x) +
1

2
L ‖y − x‖2 . (54)

The next lemma shows that given our assumptions on the differentiability of the loss function and
the smoothness of the soft-decision function of the classifier, the private loss function of each device
is Lipschitz continuous with Lipschitz continuous gradients. The importance is merely technical,
and is meant to compress our set of assumption. Instead, one can just assume that the private loss
function is Lipschitz continuous with Lipschitz continuous gradients. As our simulations suggest, our
algorithm converges with practical DNNs regardless of their smoothness properties.
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Lemma 10. Assume that L (s,y) is twice continuously differentiable on ∆K (with respect to s)
and that s (θn, x) is Lipschitz continuous with Lipschitz continuous gradients. Then Ln (θn) =∑
x̃∈Dn

L (s (θn, x̃) ,y (x̃)) is Lipschitz continuous with Lipschitz continuous gradients.

Proof. If L(s,y) : ∆K × ∆K → R+
0 is twice continuously differentiable in s (as vector func-

tion) then since the simplex ∆K is closed, then by the extreme value theorem (see [48, Page 89])
‖∇sLn (s,y) ‖ ≤ M1 for some M1 > 0 and the Hessian satisfies ‖∇2

sLn (s,y) ‖ ≤ M2 for some
M2 > 0. Then by the mean value theorem (see [48, Page 127]) L (s,y) is Lipschitz continuous with
Lipschitz continuous gradients, for every y ∈ ∆K .

Then since s (θn, x) is Lipschitz continuous, the composition Ln (θn) is also Lipschitz continuous.
Additionally, Ln (θn) has Lipschitz continuous gradients since for any θ1,θ2 ∈ Rpn

‖∇Ln (θ2)−∇Ln (θ1)‖ ≤∥∥∥∥∥ ∑
x̃∈Dn

(∇s (θ1, x))
T ∇sL (s (θ1, x̃) ,y (x̃))−

∑
x̃∈Dn

(∇s (θ2, x))
T ∇sL (s (θ2, x̃) ,y (x̃))

∥∥∥∥∥ ≤∥∥∥∥∥ ∑
x̃∈Dn

(∇s (θ1, x)−∇s (θ2, x))
T ∇sL (s (θ1, x̃) ,y (x̃))

∥∥∥∥∥+∥∥∥∥∥ ∑
x̃∈Dn

(∇s (θ2, x))
T

(∇sL (s (θ1, x̃) ,y (x̃))−∇sL (s (θ2, x̃) ,y (x̃)))

∥∥∥∥∥ ≤(a)∑
x̃∈Dn

‖∇s (θ1, x)−∇s (θ2, x)‖ ‖∇sL (s (θ1, x̃) ,y (x̃))‖+

∑
x̃∈Dn

‖∇s (θ2, x)‖ ‖∇sL (s (θ1, x̃) ,y (x̃))−∇sL (s (θ2, x̃) ,y (x̃))‖ ≤
(b)
L ‖θ2 − θ1‖ (55)

where (a) uses the triangle inequality and the definition of the spectral norm for the matrix ∇s (θ, x).
Inequality (b) uses that s (θ2, x) and L (s,y) (with respect to s) are both Lipschitz continuous with
Lipschitz continuous gradients.

12 Simulations

12.1 Simulation Setup

Across the simulations four models were used: LeNet-5 [40], ResNet-2, ResNet-8, and
ResNet-14 [42]. The ResNet-14 model is built from the original ResNet-18 architecture in [42]
but with the lower number of filters {16, 32, 64} and three residual blocks used for ResNet-20 on
CIFAR10 in [42]. The ResNet-2 and ResNet-8 were then similarly constructed, but with only one
and two residual blocks respectively.

Simulations were run on both the MNIST dataset [40] and the CIFAR10 dataset. For MNIST we used
the 60k/10k training/test split as the dataset is packaged. We used the 50k/10k training/test split of
CIFAR10. For both datasets we further divided the training set as detailed below for the different
simulation settings.

Keeping in line with the analysis we used plain SGD without momentum or additional regularization
methods for all algorithms, which maintains a fair comparison. Cross-entropy was used as the private
loss function for all simulations.

Each doubly stochastic communication matrix was randomly generated given a maximum degree
parameter and constructed from a random convex combination of random permutation matrices,
based on Birkhoff’s Theorem (pg. 549) [47].

For the setting of devices training LeNet-5 on MNIST which includes Fig. 2 and Fig. 5, first a random
40% of the training data points were withheld and used as the reference dataset that all devices receive.
The remaining 60% was divided uniformly at random, without replacement over the 16 devices as
their private training data. In the simulations where there were less than 16 devices we maintained
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the same division of data points. This means that as we went from 2 to 4 devices and 4 to 8 devices,
etc. we were simply increasing the number of devices in the communication network. Relatedly, in
both Fig. 2 and Fig. 5 all communication networks had a maximum degree of 3, except for when
there were only 2 devices which had a maximum degree of 1. The private data batch sizes for SGD
with all algorithms was 32 and the network batch size for D-Distillation was likewise 32.

Hyper-parameters tuning was conducted for a communication network of 8 devices, and then the
selected hyper-parameters were used for the other networks with different numbers of devices in
this setting. The selection was done to maximize the final validation accuracy from 80%/20% train-
ing/validation split of each device’s private data after 800 epochs. The entire device’s private training
data was then used for the final training round where the test results were evaluated. The private and
network batch sizes were set to 128 in this setting unless labeled otherwise. For each algorithm (D-
Distillation, D-SGD, Silo-SGD) we tested starting step sizes of {0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 0.5}
and values of the regularization parameter β for D-Distillation of {1, 3, 6, 12}. This led to the
selection of a starting step size of 0.15 for all three algorithms and β = 3 for D-Distillation. All
simulations were run with a step size schedule that decreased by an order of magnitude after 150 and
225 epochs. After 225 epochs a decay multiple, e−0.55(m−400) for epoch number m, was included to
abide by the learning rate / step size assumptions of Theorem 3.

The MNIST results in Fig. 4 used the same settings as above. There was no further optimization for
any of the communication reduction schemes.

The training of 8 devices with ResNet-14 on CIFAR10 for Fig. 4 followed the same training outline
as above. We trained both D-SGD and D-Distillation without any of the communication reduction
schemes and on a communication network of 8 devices with a maximum degree of 4. A random
25% of the training data points were withheld and used as the reference dataset, and the rest were
randomly assigned to the 8 devices as private data. Once the hyper-parameters had been selected for
D-Distillation, the same hyper-parameters were used for each of communication reduction schemes
without further optimization. Optimizing for mean validation accuracy at 800 epochs, we tested
starting step sizes of {0.01, 0.02, 0.05, 0.1} and values of the regularization parameter β for D-
Distillation of {1, 6, 12, 16, 24}. This led to the selection of a starting step size of 0.02 for all three
algorithms and β = 16 for D-Distillation. All simulations were run with a step size schedule that
decreased by an order of magnitude after 300 and 600 epochs. After 600 epochs a decay multiple,
e−0.55(m−600) for epoch number m, was included.

For the cross-model architecture simulations of Fig. 3 on CIFAR10 we followed the same training
outline as above, but we tuned the hyper-parameters separately for the LeNet-5 and ResNet-8 on 8
devices. ResNet-2 was run with the selected hyper-parameters for ResNet-8 with no further tuning.
The optimization of ResNet-14 occurred in the previous setting and the same parameters were used
here. LeNet-5 was run over the starting step sizes of {0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 0.5} and β
for D-Distillation of {1, 3, 6, 12, 16, 24}. This led to the selection of a starting step size of 0.15 for
D-SGD and 0.05 for Silo-SGD and D-Distillation, with β = 6. ResNet-8 was run over the starting
step sizes of {0.02, 0.05, 0.1, 0.15, 0.2} and β for D-Distillation of {1, 3, 6, 12, 24}. Ultimately, 0.15
was selected as the initial step size for D-SGD and Silo-SGD, while 0.05 with β = 6 was selected
for D-Distillation. All simulations were run with a step size schedule that decreased by an order of
magnitude after 300 and 600 epochs. After 600 epochs a decay multiple, e−0.55(m−600) for epoch
number m, was included.

For the communication network in the cross-model simulations, D-Distillation had one 8 device
network with a maximum degree of 3 with devices of different model types assigned at random to their
position in the network. Since D-SGD cannot run between different models, we instead randomly
assigned devices to one of two or one of four model types. Then we formed one communication
network per model architecture for D-SGD. When there were two model types, and therefore 4 devices
in each of the two D-SGD communication networks they were assigned a maximum degree of 3.
When there were four model types, and therefore 2 devices in each of the two D-SGD communication
networks they were assigned a maximum degree of 1.

The final setting pertains to Fig. 6 and Fig. 7 where ResNet-14 was training on CIFAR10. A smaller
number of private data points (750 per device) were allocated, and instead increasing sizes of reference
data sets were simulated. We note that in practice the size of the reference data set does not come at
a decrease to the private data set, especially since the reference data set is unlabeled and can come
from a different source. In this setting, 6 devices were simulated on a communication graph with a
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maximum degree of 3. Both private and network batch sizes were set to 32 for all runs. We performed
hyper-parameter selection on 2 devices and for simplicity maintained the same setting with 6 devices.
The selection process used a 80%/20% training/validation split and then combined the two subsets
for the final training and test evaluation round. We selected the initial step size from the same list
as above after 800 total epochs and with β values across {1, 2, 3, 6, 12, 24}. This led to step size
selection of 0.02 for all algorithms with a β = 6 for D-Distillation. All simulations were run with
a step size schedule that decreased by an order of magnitude after 400 and 600 epochs, after also
testing decreases at 200/300 and 300/450. After 600 epochs a decay multiple, e−0.55(m−600) for
epoch number m, was added to abide by the step size assumptions of Theorem 3. Reference data set
sizes of 750, 1500 and 7500 were evaluated, and 7500 was selected for the results displayed in Fig. 7.

The simulations were run on a server with 40 Intel Xeon CPU E5-2630 v4 at 2.20GHz and 252GB
system memory. Simulations with LeNet-5 on 2 devices took 0.5 hours, 4 devices took 1 hour, 8
devices took 6, and 16 devices took 30 hours. Simulations with ResNet-14 on 2 devices took 1.2
hours, 6 devices took 6 hours, 8 devices took 12 hours.

12.2 Additional Simulation Results

12.2.1 Varying Number of Devices

The setting of edge devices is different from traditional centralized training or even distributed
methods for data parallelism. The real-world setting of edge devices with private data means that
the amount of data per device is a given. The only options are to let each device train on its own
(Silo-SGD) or see if collaboration (without private data sharing) can improve each device’s training.
The more devices that can be included in a communication network to participate in training with
an effective collaborative algorithm, the more private data the network will have from which to
distill knowledge. Simulations below compare the performance for 2, 4, 8 and 16 devices in the
communication network. The results of Fig. 5 display a general accuracy improvement from adding
more devices to the network. These initial findings indicate that the D-Distillation algorithm will
likely continue to increase its performance gains over Silo-SGD for larger communication networks.
Additional simulations with more devices will provide further insight into how the performance of
D-Distillation scales with the number of devices.

Figure 5: Test accuracy mean across devices for 2, 4, 8 and 16 devices in the communication network
with the same number of private data points per device, network batch sizes of 32 for the LeNet-5
models training on MNIST.

12.2.2 Varying Reference Data Set Size

Even when the private data set size is fixed, the algorithm designer can still curate both the data
points and adjust the size of the reference data set for D-Distillation. The simulations in Fig. 6
evaluate the accuracy and each loss term involved in D-Distillation for three reference data set sizes of
{750, 1500, 7500} data points while training ResNet-14 on CIFAR10. A smaller number of private
data points (750 per device) are allocated to allow for the increasing sizes of reference data sets from
the CIFAR10 dataset. In practice, an increased reference data set size does not require a decrease in
the private data set, especially since the reference data set is unlabeled and can come from a different
source. All other hyper-parameters are consistent over this set of simulations. Since each of the
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6 devices in these simulations has 750 data points it naturally leads to a much lower baseline test
accuracy than the previous simulations on CIFAR10 in Fig. 3 and Fig. 4. The main point of this
experiment is to quantify the relative gain of increasing the reference data set size, which comes at no
additional computation or communication cost.

Encouragingly, we find that the test accuracy sees a 6.85 percentage point improvement for a 10×
larger reference data set. Interestingly, the average private loss (cross-entropy in (1)) on the test
data experiences a more drastic reduction of 51.5%. To understand the test private loss results,
we examine the loss terms from the training process. The soft-decision loss (the second term in
(2) between the reference soft-decision and the network soft-decision) is consistently highest for
the largest reference dataset. The network loss is analogous to the soft-decision loss, but it is the
mean-squared error between the local device’s network soft-decisions and the weighted average of
its neighbors’ communicated network soft-decisions. In the simulation results, the network loss
for the largest reference data set is particularly differentiated in its sustained high value until the
step size decreases rapidly after 400 and 600 epochs. When these rapid drops appear in both the
network and soft-decisions losses, they also appear in the test private loss. This indicates the sustained
disagreement between reference soft-decisions and network soft-decisions across devices in the first
half of the training process is related to the improved performance with a larger reference dataset (and
the greater variety of data points included within). A larger reference data set is just one mechanism
to achieve this variety and sustained disagreement during the early training regime.
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Figure 6: D-Distillation accuracy and different loss term values for varying reference dataset size.
The simulations shown are for 6 devices with ResNet-14 models on a communication graph with a
maximum degree of 3 and a per device private dataset size of 750 data points on CIFAR10.

12.2.3 Hyper-Parameter Grid-Search for Two Devices

Finally, we exploited the short run time of the small private data set size for 2 devices to perform a full
grid-search over the step size, step size decreases, beta, and reference data set size for ResNet-14
on CIFAR10. The best results are presented in Fig. 7 where D-Distillation reaches the same final
accuracy as D-SGD but with a 160× reduction in communication. In this setting, the performance of
D-Distillation coincides with that of D-SGD and suggests that further D-Distillation performance
gains can be achieved from refined hyper-parameter tuning in other data and device regimes.
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Figure 7: Average test accuracy by epoch (left) and total communication (right) for Silo-SGD,
D-SGD, D-Distillation for a 2 device communication network and 750 data points per device after
grid-search based tuning.

12.3 Possible Performance Enhancements

In this subsection we discuss the key ideas to explore in order to unleash the full practical potential of
D-distillation, based on what theory and our initial simulation results suggest.

Possible performance enhancements include the following:

Number of devices: The motivation of distributed on-device learning is to efficiently distill knowledge
from across the network of devices. We expect that the more devices in the network (i.e., more private
data in the network), the greater the improvement will be compared to Silo-SGD. As seen in Fig. 5,
our simulations agree with this theoretical expectation; the performance increases with the number
of devices. Furthermore, D-Distillation’s cross-architecture learning ability, which D-SGD (or FL)
does not share, allows more devices to join the distributed training process and thereby improve
performance.

Reference data set: Our reference data set is unlabeled and can consist of artificiality designed data
points. Ensuring the reference dataset has a balanced number of data points over the different classes
is a basic requirement. However, introducing smart structure to these data points (e.g., spanning
the space of likely features) has the potential to improve performance significantly. This requires a
separate investigation that may benefit from ideas in coding theory.

Reference data set size: As can be seen in Fig. 6, the reference data set size has a significant
impact on performance. Our theoretical analysis suggests that a larger reference dataset allows for
devices to learn more from each other as the set of stationary points of (3) becomes more selective.
However, focusing too much on agreeing with other devices during the training process may sacrifice
generalization accuracy for the sole purpose of agreeing on arbitrary consensus values. This tradeoff
is controlled by the β parameter of equation (5). Optimizing the balance between learning from
private data and the network is a straightforward way to improve performance.

Network batch size: The network batch size is the size of the random subset of reference data used
to update the weights and network soft-decisions in a given iteration. This hyper-parameter is a
natural way to control the communication overhead of our algorithm. As seen in Fig. 4, changing
the network batch size affects the performance of D-Distillation. In deviation from the proofs of this
work, separately adjusting the step size schedule for the private and distillation loss terms will be
necessary to properly account for different batch and data set sizes on the private and reference data
sets. Studying the full effect of the network batch size will enable the tuning of the accuracy and
communication tradeoff to meet a desirable working point for the application at hand.

Model size: Since D-Distillation does not communicate a vector that scales with the weights of
the DNN, model size can be scaled up to meet the devices’ computational capabilities without
affecting the per iteration communication overhead. Given that a larger DNN will impact the time
to convergence for D-Distillation, the communication overhead reduction for larger DNNs requires
detailed experiments.
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Model variety: As opposed to D-SGD, D-Distillation can include model variety in its communication
network of devices. Varying the architectures of DNNs has been shown to improve performance and
mitigate overfitting in ensemble learning [17]. Our experiment in Fig. 3 confirms these results. More
extensive simulations on larger networks with more classifier architectures, even beyond DNNs, are
expected to exhibit larger performance gains over D-SGD.

Compression: D-Distillation significantly reduces the communication overhead before employing
soft-decision compression. Applying compression methods was not the focus of this paper, which
focused instead on the theoretical concept of D-Distillation. However, our experiment in Fig. 4
shows that off the shelf communicated reduction schemes can be easily applied to our communicates
soft-decisions. Recently, more sophisticated gradient compression schemes such as sparsification
combined with gradient correction have demonstrated a great deal of communication reduction
(see for example [27, 28]). It is highly likely that a careful design and combination of these more
sophisticated communication reduction schemes can easily reduce the communication overhead of
D-Distillation further, with little to no performance degradation.
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