Random Reshuffling is Not Always Better

Part of Advances in Neural Information Processing Systems 33 (NeurIPS 2020)

AuthorFeedback Bibtex MetaReview Paper Review Supplemental

Authors

Christopher M. De Sa

Abstract

Many learning algorithms, such as stochastic gradient descent, are affected by the order in which training examples are used. It is often observed that sampling the training examples without-replacement, also known as random reshuffling, causes learning algorithms to converge faster. We give a counterexample to the Operator Inequality of Noncommutative Arithmetic and Geometric Means, a longstanding conjecture that relates to the performance of random reshuffling in learning algorithms (Recht and RĂ©, "Toward a noncommutative arithmetic-geometric mean inequality: conjectures, case-studies, and consequences," COLT 2012). We use this to give an example of a learning task and algorithm for which with-replacement random sampling actually outperforms random reshuffling.