
Random Reshuffling is Not Always Better

Christopher De Sa
Department of Computer Science

Cornell University
cdesa@cs.cornell.edu

Abstract

Many learning algorithms, such as stochastic gradient descent, are affected by the
order in which training examples are used. It is generally believed that sampling the
training examples without-replacement, also known as random reshuffling, causes
learning algorithms to converge faster. We give a counterexample to the Operator
Inequality of Noncommutative Arithmetic and Geometric Means, a longstanding
conjecture that relates to the performance of random reshuffling in learning algo-
rithms [19]. We use this to give an example of a learning task and algorithm for
which with-replacement random sampling outperforms random reshuffling.

1 Introduction

Many machine learning algorithms work by iteratively updating a model based on one of a number of
possible steps. For example, in stochastic gradient descent (SGD), each model update is performed
based on a single example selected from a training dataset. The order in which the samples are
selected—in which the update steps are performed—can have an impact on the convergence rate of
the algorithm. There is a general sense in the community that the random reshuffling method, which
selects the order by without-replacement sampling of the steps in an epoch (where an epoch means a
single pass through the data, and different epochs may use different random orders), is better (for
convergence) than ordinary with-replacement sampling for these algorithms [7, 8, 19].

There are two intuitive reasons why we might expect random reshuffling to outperform sampling
with replacement. The first applies when our model updates are in some sense noisy: each one could
perturb us away from the desired optimum, and they are only guaranteed to approach the optimum
on average. In this case, random reshuffling ensures that the noise in some sense “cancels out” over
an epoch in which all samples are used. Most previous work on random reshuffling has studied this
noisy case, and this intuition has been borne out in a series of results that show random-reshuffling
results in a convergence rate of O(1/t2) rather than O(1/t) for convex SGD [8, 10, 16, 18, 20].

The second intuitive reason is that, because sampling without replacement avoids using the same
update step repeatedly, it should tend to be “more contractive” than sampling with replacement. This
intuition applies even for “noiseless” algorithms that converge at a linear rate of O(1)t. In contrast to
the noisy case, the belief that random reshuffling should be better in general for these algorithms that
converge at a linear rate is backed up theoretically only with conjectures. The main conjecture in
this space is the Operator Inequality of Noncommutative Arithmetic and Geometric Means, stated as
Conjecture 1 of Recht and Ré [19]. That conjecture, which is motivated by algorithms such as the
randomized Kaczmarz method [23] that converge at a linear rate, asserts the following.

Conjecture 1 (Operator Inequality of Noncommutative Arithmetic and Geometric Means). Let
A1, . . . , An ∈ Rd×d be a collection of (symmetric) positive semidefinite matrices. Then it is

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

conjectured that the following inequalities always hold:∥∥∥∥∥∥ 1

n!

∑
σ∈P(n)

n∏
i=1

Aσ(i)

∥∥∥∥∥∥ ≤
∥∥∥∥∥
(

1

n

n∑
i=1

Ai

)n∥∥∥∥∥ , (1)

∥∥∥∥∥∥ 1

n!

∑
σ∈P(n)

(
n∏
i=1

Aσ(i)

)T (n∏
i=1

Aσ(i)

)∥∥∥∥∥∥ ≤
∥∥∥∥∥∥ 1

nn

∑
f∈{1,...,n}n

(
n∏
i=1

Af(i)

)T (n∏
i=1

Af(i)

)∥∥∥∥∥∥ , (2)

where P(n) denotes the set of permutations of the set {1, . . . , n} and ‖ · ‖ denotes the `2 induced
operator norm (the magnitude of the largest-magnitude eigenvalue for symmetric matrices).

A variant of the conjecture, which moves the sums to the outside of the norms, was given by [7].
Conjecture 2. Let A1, . . . , An ∈ Rd×d be a collection of (symmetric) positive semidefinite matrices.
Then it is conjectured that the following inequality always holds:

1

n!

∑
σ∈P(n)

∥∥∥∥∥
n∏
i=1

Aσ(i)

∥∥∥∥∥ ≤ 1

nn

∑
f∈{1,...,n}n

∥∥∥∥∥
n∏
i=1

Af(i)

∥∥∥∥∥ . (3)

Conjecture 1 is a quite natural generalization of the ordinary arithmetic-mean-geometric-mean
(AMGM) inequality of real numbers, which states that for non-negative numbers xi,∏n

i=1 xi ≤
(

1
n

∑n
i=1 xi

)n
.

In Conjecture 1, positive semidefinite matrices (matrices with non-negative eigenvalues) take the
place of the non-negative scalars of the AMGM inequality, and indeed Conjecture 1 reduces to the
AMGM inequality when d = 1. Conjecture 1 was proven by the original authors in the case of n = 2,
and has been proven subsequently for n = 3 [12, 29]. It also seems to be true for random ensembles
of matrices [2, 19], and random testing seems to suggest that Conjecture 1 is always true. However,
recent work has shown non-constructively that Conjecture 1 is false [3, 14].1 These non-constructive
disproofs are interesting, but deliver limited insight about random reshuffling, both because they
involve complicated proof techniques and because they do not translate to concrete counterexamples
of matrices A1, A2, . . . , An that can be used to study learning algorithms empirically.

In this paper, we propose simple counterexamples for these conjectures—to our knowledge this is the
first explicit counterexample known for any of these conjectures, and the first disproof of Conjecture 2.
We explore the consequences and limitations of this counterexample throughout the paper, and end
by showing concrete problems for which SGD with random reshuffling converges asymptotically
slower than SGD using with-replacement sampling. Our paper is structured as follows.

• In Section 2, we construct a family of counterexamples for Conjectures 1 and 2, showing
constructively that all three conjectured inequalities are false.

• In Section 3, we adapt the counterexample to give concrete ML algorithms for which with-
replacement sampling outperforms without-replacement sampling, contrary to folklore.

• In Section 4, we prove that for non-trivial matrix ensembles (1) always holds with strict inequality
for sufficiently small step sizes. Thus, for algorithms with a slowly decreasing step, without-
replacement sampling always outperforms with-replacement sampling. On the other hand, we
show that when optimal step sizes are chosen separately for with- and without-replacement
sampling (but may not decrease to zero), with-replacement sampling can still perform better.

• In Section 5, we give an example convex learning task for which SGD using with-replacement
sampling converges asymptotically faster than random-reshuffling.

1.1 Notation

In this paper, ‖·‖ of a vector always denotes the Euclidean `2 norm, and ‖·‖ of an operator denotes
the `2 induced norm. We have 1 denote the all-1s vector. We let ⊗ denote the Kronecker product and
⊕ denote the matrix direct sum, such that x⊕ y is the block diagonal matrix

[
x 0
0 y

]
. We let Sd denote

1Lai and Lim [14] can be considered parallel work to this paper.

2

the set of symmetric d× d matrices over R, and let Pd denote the set of symmetric positive definite
d× d matrices. We let � denote inequality with respect to the positive definite ordering (i.e. A � B
when B − A ∈ Pd). When K ⊂ Rd is a convex cone (a set closed under sums and non-negative
scalar multiplication), and x, y ∈ Rd, we say x �K y if and only if y− x ∈ K, and for A,B ∈ Rd×d.
We let M(K) denote the set {A ∈ Sd | ∀x ∈ K, Ax ∈ K} of matrices that preserve the convex cone
K, and we note that M(K) is also a convex cone. For brevity, we let rrk : Sd × Sd × · · · × Sd → Sd
denote the “random reshuffling” function

rrk(A1, A2, . . . , An) = 1
n!

∑
σ∈P(n)

∏k
i=1Aσ(i),

and define srrk similarly as the “symmetric random reshuffling” function

srrk(A1, A2, . . . , An) = 1
n!

∑
σ∈P(n)

(∏k
i=1Aσ(i)

)T (∏k
i=1Aσ(i)

)
.

Note that this lets us write (1) more compactly as ‖rrn(A1, . . .)‖ ≤ ‖rr1(A1, . . .)‖n.

1.2 Related Work

Conjecture 1 was a generalization of a line of older work on matrix arithmetic-mean geometric-mean
inequalities for two matrices [4, 5]. It was proved by Recht and Ré [19] in the case of n = 2 and
by Zhang [29] for n = 3. Duchi [7] proposed a variant, Conjecture 2, in which the sum appears
outside the norm and proved it for n = 2, and it was extended to the n = 3 case by Israel et al.
[12]. Albar et al. [2] proves a version of the inequality of Conjecture 1 that is weaker by a constant.
Albar et al. [3] provides a non-constructive disproof of (2), and very recently Lai and Lim [14] gave
a non-constructive disproof of (1) via a transformation to the noncommutative Positivstellensatz.
Alaifari et al. [1] studies a related class of matrix rearrangement inequalities.

Several prior works have studied SGD on “noisy” learning problems, for which at the optimum w∗

it is not the case that ∇fi(w∗) = 0 for every component loss function fi. Gürbüzbalaban et al. [8]
exhibited an SGD variant for which random reshuffling converges at a Θ(1/t2) rate, which improves
on the Ω(1/t) rate of standard with-replacement-sampled SGD; similar results were also proved
for the “noisy” case in other settings [10, 20, 22] Ying et al. [25] and Ying et al. [26] show that
random reshuffling converges for variance-reduced algorithms, and Ying et al. [27] analyzes random
reshuffling in the constant-step-size case. Meng et al. [15] studies a distributed variant of SGD with
random shuffling, albeit one different from the one we study here (Algorithm 1). Beyond SGD,
Oswald and Zhou [17] analyzes random reshuffling for methods such as Gauss-Seidel and Kaczmarz,
and He et al. [11] studies scan order for Gibbs sampling.

2 Constructing a Counterexample

We start by outlining the main idea that underlies our counterexample. Fix some dimension d ∈ N,
and let n = d. For any permutation σ ∈ P(n), let Pσ denote the permutation matrix over Rn, such
that (Pσx)i = xσ(i) for any vector x ∈ Rn. The main idea is to construct a sequence of matrices
A1, A2, . . . , An such that PσAiPTσ = Aσ(i) for any σ. For any permutation matrix Pς ,

rrk(A1, A2, . . . , An) = rrk(PςA1P
T
ς , PςA2P

T
ς , . . . , PςAnP

T
ς) =

1

n!

∑
σ∈P(n)

k∏
i=1

(
PςAσ(i)P

T
ς

)
= Pς

(
1
n!

∑
σ∈P(n)

∏k
i=1Aσ(i)

)
PTς = Pς (rrk(A1, A2, . . . , An))PTς ,

where the first equality holds because rrk is a symmetric function, and the fourth holds because
PTς Pς = I . This shows that rrk(A1, . . .) is preserved by any permutation of its coordinates, and the
only such matrices are of the form X = α11T + βI , where 1 denotes the all-1s vector. With careful
choice of the Ai, we can find formulas for α and β, and show that they violate Conjecture 1.

2.1 A Counterexample for the First Inequality

Define a family of vectors yk for k ∈ {1, . . . , n} such that for i 6= k we have

(yk)k =

√
n− 1

n
and (yk)i =

−1

n ·
√
n− 1

.

3

Consider the matrices Ak = I + 1yTk + yk1
T . For example, when n = 5, the matrices look like

A1 =

[1.8 0.3 0.3 0.3 0.3
0.3 0.8 −0.2 −0.2 −0.2
0.3 −0.2 0.8 −0.2 −0.2
0.3 −0.2 −0.2 0.8 −0.2
0.3 −0.2 −0.2 −0.2 0.8

]
, A2 =

[0.8 0.3 −0.2 −0.2 −0.2
0.3 1.8 0.3 0.3 0.3
−0.2 0.3 0.8 −0.2 −0.2
−0.2 0.3 −0.2 0.8 −0.2
−0.2 0.3 −0.2 −0.2 0.8

]
, . . .

It is clear by construction that for any σ ∈ P(n), then PTσ AkPσ = Aσ(k). It is also easily seen that
the sum of the yk is zero, from which we can see immediately that

rr1(A1, . . . , An) =
1

n

n∑
i=1

Ai = I + 1

(
1

n

n∑
i=1

yi

)T
+

(
1

n

n∑
i=1

yi

)
1T = I.

So, ‖rr1(A1, . . . , An)‖ = 1. It is less immediate but still straightforward to show the following.

Statement 1. If we define λ (for any k ∈ N) as

λ =

(
1 +

1

n− 1

)k/2
· cos

(
k · arcsin

(
1√
n

))
,

then the random-reshuffled product of these matrices can be written as

rrk(A1, . . . , An) = λ · 11
T

n
+

(
λ− 1

n− 1
+ 1

)(
I − 11T

n

)
and so λ will be an eigenvalue of rrn(A1, . . . , An) with corresponding eigenvector 1.

We include a full derivation of this result—which is relatively easy to derive by hand—in the appendix.
It is easy to find n for which |λ| is greater than 1. The smallest such n is n = 5, where

rrn(A1, . . . , An) =
29

64
·
(
I − 11T

5

)
− 19

16
· 11

T

5
, and λ =

−19

16
.

This fact can be easily verified numerically, by computing rrn directly for n = 5. Note that we can
also have λ > 1, e.g. for n = 40, λ ≈ 1.655. This shows directly that (1) is false. Note that while this
setup may seem to suggest that a counterexample requires n = d (while usually in linear regression
n� d), it is straightforward to construct examples for which n and d are arbitrary (but no less than
5) by either adding additional I matrices to the ensemble or adding additional dimensions containing
only a 1 on the diagonal: this will change the norms of neither the arithmetic nor the geometric mean.

2.2 A Counterexample for the Second Inequality

Using our construction from the previous section, define a collection of positive semidefinite symmet-
ric matrices Bi such that B2

i = Ai. For these matrices, srr1(B1, . . . , Bn) = 1
n

∑n
i=1B

2
i = I , so by

induction

1

nn

∑
(s1,...,sn)∈{1,...,n}n

(
n∏
i=1

Bsi

)T (n∏
i=1

Bsi

)
= I.

Thus, its norm will be 1. Just as before, these matrices have the property that PσBiPTσ = Bσ(i) for
any σ, so Pσsrrn(B1, . . .)P

T
σ = srrn(B1, . . .) and the symmetrized random-reshuffled product can

also be written as α11T +βI . It is possible to perform the same sort of analysis as done in Section 2.1
to find an expression for the eigenvalues of srrn(B1, . . .) explicitly as an analytic expression in n;
however, since it is much more complicated and does not deliver additional insight, for lack of
space we will just state the result for the particular case of n = 10. This case is convenient because
10 − 1 = 32, and so Ai is rational and thus Bi is over Q(

√
2), and so we can do exact arithmetic

easily. In this case, the eigenvalue of srrn(B1, . . . , Bn) with corresponding eigenvector 1 is exactly

λ =
16623165607286458

16677181699666569
+

2195717144015980

16677181699666569

√
2 ≈ 1.183,

which shows directly that (2) is false, because if it were true this number could be at most 1.

4

2.3 A Counterexample for the Third Inequality

We can construct a counterexample to Conjecture 2 based on the “tight frame” example of Recht and
Ré [19]. The “tight frame” example for n = 2 consists of symmetric projection matrices Ak ∈ R2×2

for k ∈ {1, . . . , n} defined as Ak = uku
T
k , where uk =

[
cos
(
πk
n

)
sin
(
πk
n

)]T
. These matrices

have the interesting property that their fixed order product A1 ·A2 · · ·An has an asymptotically larger
norm than the nth power of their mean, and they are used by Recht and Ré [19] to motivate why
symmetrizing the order (by sampling without replacement rather than just going with some arbitrary
fixed order) is important.

Starting with this, we construct the family of matrices Bk defined by Bk =
⊕

ς∈P(n)Aς(k), where⊕
here denotes an indexed matrix direct sum (which constructs a block diagonal matrix). The direct

sum has the important properties that ‖X ⊕ Y ‖ = max(‖X‖ , ‖Y ‖) and that (if the dimensions
match) (X1 ⊕X2) · (Y1 ⊕ Y2) = (X1Y1)⊕ (X2Y2). As a consequence, for any permutation σ,∥∥∏n

i=1Bσ(i)

∥∥ =
∥∥∥∏n

i=1

(⊕
ς∈P(n)Aς(σ(i))

)∥∥∥ =
∥∥∥⊕ς∈P(n)

(∏n
i=1Aς(σ(i))

)∥∥∥
= maxς∈P(n)

∥∥∏n
i=1Aς(σ(i))

∥∥ = maxς∈P(n)

∥∥∏n
i=1Aς(i)

∥∥ = ‖
∏n
i=1Ai‖ ,

where the last equality is a known property of the tight frame example, and the other equalities follow
from properties of the direct sum. This means that all the terms on the left side of (3) for this example
will be the same, and in particular

1
n!

∑
σ∈P(n)

∥∥∏n
i=1Bσ(i)

∥∥ = ‖
∏n
i=1Ai‖ .

By a similar argument, the right side of that equation will be

1

nn

∑
f :{1,...,n}n

∥∥∥∥∥
n∏
i=1

Bf(i)

∥∥∥∥∥ =
1

nn

∑
f :{1,...,n}n

max
ς∈P(n)

∥∥∥∥∥
n∏
i=1

Aς(f(i))

∥∥∥∥∥ .
These formulas make it straightforward to compute these values, even though the matrices in question
are of dimension 2 · n!. For the particular case of n = 6,

1

n!

∑
σ∈P(n)

∥∥∥∥∥
n∏
i=1

Bσ(i)

∥∥∥∥∥ =
9

32

√
3 ≈ 0.487 and

1

nn

∑
f :{1,...,n}n

∥∥∥∥∥
n∏
i=1

Bf(i)

∥∥∥∥∥ =
26761

124416
+

29965

248832

√
3 ≈ 0.424.

This is a counterexample to Conjecture 2.

3 A Machine Learning Example

Stochastic gradient descent is perhaps the central example in ML of an algorithm where sample order
can affect convergence. Consider the parallel SGD algorithm described in Algorithm 1. Here, for
every epoch, each of M parallel workers runs n iterations of SGD, using either with-replacement
or without-replacement sampling. Then, the resulting weights are averaged among the workers to
produce the starting value for the next epoch. This once-per-epoch averaging in some sense “simulates”
the expected value in Conjecture 1, which makes Algorithm 1 a natural SGD-like algorithm to explore
with the conjecture.2 This is equivalent to the method of local SGD with periodic averaging [9, 28]
with the averaging period equal to the epoch length. Based on folklore, random reshuffling should
outperform standard sampling for this sort of algorithm. We will show that this is not always the
case by constructing an example for which standard sampling converges at a linear rate, but random
reshuffling fails to converge at all.

Consider the following matrix-completion-like task. We have an unknown rank-1 matrix X � 0, and
we are given noisy “measurements” from it of the form uTi Xvi ≈ ai where we know (ui, vi, ai). We
want to recover X by solving the regularized least-squares minimization problem

minimize:
1

n

n∑
i=1

(
uTi Xvi − ai

)2
+

1

2
γ · tr (X) subject to X ∈ Pd, rank(X) ≤ 1.

2Note that the parallelism itself is not necessary here; what is necessary for our purposes is the averaging.
The averaging is necessary (even for large n) because it models the expected value in the original inequality (1):
without it the convergence rate may be effected by higher-order moments (not just the expected value). We study
parallel SGD because it is a “real” method from the literature that uses averaging [9, 28].

5

Algorithm 1 Parallel SGD

1: given: n loss functions fi, step size scheme α1, α2, . . ., initial state w0 ∈ Rd
2: given: number of epochs K, parallel machines M , replacement policy RP
3: for k = 1 to K do
4: for all m ∈ {1, . . . ,M} do in parallel on machine m
5: uk,m,0 ← wk−1

6: if RP = with-replacement a.k.a standard sampling then
7: sample σk,m uniformly from the set of functions from {1, . . . , n} to {1, . . . , n}
8: else if RP = without-replacement a.k.a random reshuffling then
9: sample σk,m uniformly from P(n)

10: for t = 1 to n do
11: uk,m,t ← uk,m,t−1 − αk∇fσk,m(t) (uk,m,t−1)

12: average wk ← 1
M

∑M
m=1 uk,m,n

13: return wK

To solve this more efficiently, we apply Algorithm 1 to a quadratic factorization [6] X = yyT , a
common technique which results in the equivalent unconstrained problem

minimize: f(y) =
1

n

n∑
i=1

fi(y) =
1

n

n∑
i=1

(
uTi yy

T vi − ai
)2

+
1

2
γ ‖y‖2 subject to: y ∈ Rd.

We are now going to pick a particular dataset of (ui, vi, ai) such that the global optimum of f is at
y = 0, and where nearby y = 0, Algorithm 1 behaves like our counterexample of Section 2. To do
this, notice that nearby y = 0,

I − α∇fi(y) =
(
(1− αγI)− 2α

(
uTi yy

T vi − ai
) (
viu

T
i + uiv

T
i

))
y

=
(
(1− αγI) + 2αai

(
viu

T
i + uiv

T
i

))
y +O(y3).

So, if we choose α, γ, ai, vi, and ui such that (1−αγI)+2αai
(
viu

T
i + uiv

T
i

)
= (1−αγ)Ai where

this Ai is from our counterexample of Section 2, then when the algorithm is sufficiently close to
y = 0, applying an iteration of SGD will behave like multiplying by a single matrixAi, and averaging
across multiple parallel workers will concentrate around the expected value over the sampled scan
order. Concretely, we pick n = 40, a constant step size α = 0.1, γ = 0.05, M = 1000, K = 100,
ui = 1, vi = yi (the yi of Section 2), and ai = 1−αγ

2α ; we initialize w0 randomly such that ‖w0‖ = 1.
It is easy to see that the global optimum of this task is at w∗ = 0, and it has no other stationary
points. Note that this is not necessarily a very realistic setting (the number of parallel workers is large
and the dataset is relatively small): the artificial setting is chosen to make the comparison stand out
clearly. Running Algorithm 1 on this example produces the results shown in Figure 1. This shows
empirically that, counter-intuitively, standard with-replacement random sampling can outperform
random reshuffling for this algorithm.

4 Taking Step Size into Account

Many algorithms, including SGD, use a step size or learning rate that often decreases over time.
Much of the previous work on random reshuffling has been done in such cases [8, 10, 20]. In this
section, we develop a variant of Conjecture 1 that incorporates a step size, and prove that statement
must hold true for sufficiently small step sizes. Our step-size-incorporating variant of Conjecture 1
is based on the following intuition. For a smooth objective, for w close to the optimum w∗ where
∇fi(w∗) = 0,

w − α∇fi(w) ≈ (I − α∇2fi(w))(w − w∗) + w∗;

for a quadratic function fi, this approximation is exact. So we can model SGD with step size α
by allowing the matrices Ai in Conjecture 1 to vary as a function of a step size α. We prove the
following theorem about this modified inequality.

Theorem 1 (Matrix AMGM Inequality, Sufficiently Small Step Size). LetA1, . . . , An be a collection
of continuously twice-differentiable functions from R+ to Sd, that all satisfy Ai(0) = I and that are
non-trivial in the sense that they have no eigenvalue/eigenvector pairs shared among all the matrices

6

0 20 40 60 80 100
epoch number

10 10

10 7

10 4

10 1

lo
ss

 g
ap

with replacement
without replacement

Figure 1: Loss gap of multiple
random runs of Algorithm 1 on
task of Section 3. Notice that
random reshuffling fails to con-
verge to the minimal loss.

0.00 0.25 0.50 0.75 1.00 1.25 1.50
step size

10 46

10 35

10 24

10 13

10 2

109

di
st

an
ce

 to
 o

pt
im

um

with replacement (M=1)
without replacement (M=1)
with replacement (M=100)
without replacement (M=100)

Figure 2: Distance to optimum
of Algorithm 1 for task of Sec-
tion 4 after K = 20 epochs.
Light dotted series indicate non-
parallel SGD (M = 1).

0 200 400 600 800 1000
epoch number

4000

3000

2000

1000

0

lo
g 1

0(
lo

ss
)

with replacement
without replacement

Figure 3: Asymptotic conver-
gence of SGD using with- and
without-replacement sampling
for multiple trials on the exam-
ple of Section 5.

A′1(0), A′2(0), . . . , A′n(0). Then for any 2 ≤ k ≤ n, there exists an αmax > 0 and a constant C > 0
such that such that for all 0 < α ≤ αmax,

‖rrk(A1(α), A2(α), . . . , An(α))‖ < ‖rr1(A1(α), A2(α), . . . , An(α))‖k − α2C.

The proof of Theorem 1 is a straightforward combination of the following two lemmas. The main
idea is that we can expand the rrk expression approximately as a polynomial in α, and then consider
only the dominant quadratic α2 term, which we can bound directly. We defer the proof of the theorem
and both lemmas to the appendix.
Lemma 1 (Binomial Theorem for Random Reshuffling). For any symmetric matrices X1, . . . , Xn,
and any constants α and β,

rrk(αI + βX1, αI + βX2, . . . , αI + βXn) =
∑k
i=0

(
k
i

)
αk−iβkrri(X1, X2, . . . , Xn).

Lemma 2. For any symmetric matrices X1, . . . , Xn ∈ Rd, and for any u ∈ Rd such that ‖u‖ = 1,

uT (rr2(X1, . . . , Xn))u ≤ ‖rr1(X1, . . . , Xn)‖2

and equality can hold only if there exists a λ ∈ R such that for all i ∈ {1, . . . , n}, u is an eigenvector
of Xi with eigenvalue λ, that is Xiu = λu.

We can use Theorem 1 to show that random reshuffling must outperform standard with-replacement
sampling for slowly decaying step size schemes for noiseless convex quadratic problems, which can
be thought of as a simplified model for optimization problems satisfying the strong growth condition
of Schmidt and Roux [21]. Specifically, we study the following simplified class of problems.
Definition 1. We say that a set of loss functions f1, . . . , fn is a noiseless convex quadratic problem
if the following conditions hold.

• (Noiselessness.) There exists a unique w∗ ∈ Rd such that for all i,∇fi(w∗) = 0.
• (Convex quadratics.) Each loss function fi is a convex quadratic fi(w) = wTHiw/2 + bTi w.
• (Lipschitz gradients.) For some L, each loss function fi satisfies∇2fi(w) � LI .

Additionally, we say that the problem is non-trivial if the Hessian matrices Hi = ∇2fi(w
∗) share no

eigenvalue/eigenvector pairs, i.e. there is no (λ, u) with u 6= 0 such that for all i, Hiu = λu.

Note that the last condition here is designed to rule out trivial cases such as all the loss functions fi
being the same. Such trivial cases only happen on a set of measure 0 within the space of all possible
loss functions f1, . . . , fn and initializations, so it is reasonable for us to exclude them. The class
of problems described by Definition 1 includes the setting of the Randomized Kaczmarz method
originally studied in Recht and Ré [19], as well as well-known tasks such as linear regression and
ridge regression.

Theorem 1 now directly implies the following useful corollary, which says that without-replacement
sampling outperforms with-replacement sampling whenever a diminishing but not square-summable
step size scheme is used—including for the important case of M = 1 in Algorithm 1, which
corresponds to the most common case of ordinary single-worker SGD.3

3Note also that it should be straightforward to extend Corollary 1 to the case of “nice” convex losses, on the
basis of the idea that any such functions must behave like quadratics locally in the neighborhood of w∗. But
since this is not deliver any new insight, we do not present such a result here.

7

Corollary 1. Consider Algorithm 1 on a non-trivial noiseless convex quadratic (using any M).
Suppose that the step size scheme satisfies 0 < αiL < 1 and is diminishing but not square-summable,
i.e. limk→∞ αk = 0 and

∑∞
k=1 α

2
k =∞. Then for almost all initial values w0 6= w∗,

lim
k→∞

∥∥E[wk,without-replacement]− w∗
∥∥∥∥E[wk,with-replacement]− w∗
∥∥ = 0.

Although it seems that Theorem 1 and Corollary 1 suggests that random reshuffling is indeed better
when we allow the use of small step sizes, it has a significant limitation that would make that
conclusion invalid: Corollary 1 only compares with-replacement and without-replacement sampling
using the same learning rate scheme for both. Instead, when comparing two algorithms in the most
fair way, we should select the best learning rate scheme for each algorithm individually. Surprisingly,
when we allow this, we can give an example of a convex learning task for which with-replacement
sampling, with a particular constant step size, converges faster than without-replacement sampling no
matter what fixed step size scheme it uses.

The convex functions in question can be constructed directly from our counterexample of Section 2.
Let fi(w) = 1

2w
THiw, where Hi =

(
I − 1

2Ai
)
⊕ 1

2 ⊕
3
2 , where ⊕ denotes the matrix direct sum

(such that X ⊕ Y is a block diagonal matrix with diagonal blocks X and Y). This function must
be convex because Hi is positive semidefinite (which follows from the fact that the eigenvalues of
Ai are 0, 1, and 2). The main idea of this construction is to “force” the step size to be α = 1, since
otherwise either the 1/2 or 3/2 coordinate will end up converging at a suboptimal rate. Although
a theoretical analysis of this would be straightforward, as such analysis delivers no new insight,
we only validate that this example works empirically on a concrete example. We pick n = 8,
M = 100, and K = 20, and we initialize w0 from a Gaussian with less power on the last two
coordinates, which makes the effect more visible. In Figure 2 we plot the distance to optimum
after K epochs for all step sizes α ∈ {0, 0.001, 0.002, . . . , 1.7}. Observe that while for smaller step
sizes, random-reshuffling outperforms standard sampling—which validates Theorem 1—the best
convergence overall is achieved by standard with-replacement sampling. Interestingly, the averaging
of Algorithm 1 is necessary for this effect to happen for this task: in Figure 2 we also display results
for standard SGD on the same problem (equivalent to setting M = 1) for which without-replacement
sampling seems to consistently outperform with-replacement sampling.

5 Random Reshuffling Can be Worse Asymptotically Even for SGD

While we have shown Conjecture 1 is false, this does not necessarily imply random reshuffling can be
worse with stochastic gradient descent, because the averaging present in Conjecture 1 is not present
in plain SGD. Our counterexamples so far do not show random reshuffling performing worse with no
averaging (Figure 2), so it remains consistent with our observations so far that random reshuffling
could always outperform with-replacement sampling for SGD. But is this necessarily true?

In this section we will show that it is not: even for SGD without any averaging (Algorithm 1 with
m = 1), we can construct a learning task for which with-replacement sampling converges strictly
faster than random reshuffling—albeit one not based on a counterexample to any of the conjectures
we have studied. Here, when we say it converges “strictly faster,” we mean that for any coupling of
the two algorithms, with-replacement sampling almost surely eventually achieves lower loss than
random reshuffling and its loss remains lower for all time. The main idea behind this construction,
which is based on the idea that any rank-deficient square matrix can be written as the product of three
symmetric positive semidefinite matrices [24], is as follows. Consider the matrices

A1 = 1
4

[
2 −1 1
−1 2 −1
1 −1 1

]
, A2 = 1

4

[
2 0 −1
0 1 1
−1 1 2

]
, A3 = 1

4

[
0 0 0
0 1 −1
0 −1 2

]
, and R = uuT

6 where u =
[

1
−2
−1

]
.

It is easy to check that all these matrices are symmetric and positive semidefinite (and � I), and that
(A1A2A3)3 = 0. Now, consider the behavior of SGD with step size α = 1/2 on the problem where

f1(w) = wT (I−A1)w, f2(w) = wT (I−A2)w, f3(w) = wT (I−A3)w, f4(w) = wT (I−R)w.

Observe that all these functions are convex, and that choosing to do a step with f1 has the effect
of multiplying w by A1, etc. This means that, for with-replacement sampling, if we sample our
examples in the order (1, 2, 3, 1, 2, 3, 1, 2, 3), the result after running those SGD steps will be to have

8

w = 0, regardless of what value of w we started with (because (A1A2A3)3 = 0). Since we are
guaranteed to sample that run of examples eventually, it follows that almost surely, after some finite
amount of time with-replacement SGD achieves wt = 0 = w∗, which minimizes the loss.

On the other hand, this sequence of samples can not occur for sampling without replacement. Instead,
every epoch of SGD will contain an R, which “disrupts” the sequence. The sequence of matrices
that are multiplied by w will consist of sequences of Ai matrices of length no more than 6 broken up
by R matrices. Because of the structure of R, for any matrix X , 6RXR = R · uTXu: this means
that the sequences of matrices RA? · · ·A?R will reduce to the product of scalars uTA? · · ·A?u. It is
straightforward to verify numerically that this scalar is nonzero for any sequence of A? matrices that
can occur for sampling without replacement. So, for almost all initializations w0, SGD with random
reshuffling on this task will never reach 0, while SGD using with-replacement sampling is guaranteed
to reach 0 in finite time. We conclude that with-replacement sampling converges asymptotically faster
than random reshuffling for this task and step size.

In fact, we can say something even more general: among all step sizes α that satisfy αL ≤ 1, where
L is the smallest constant such that each fi is has L-Lipschitz gradients, SGD with α = 1/2 using
with-replacement sampling converges asymptotically faster than all other settings. That is, here
with-replacement sampling is still converging asymptotically faster, even if we choose the optimal
learning rates for both sampling strategies separately. We can see that this holds immediately from
the fact that for 0 < α < 1, taking a step with respect to fi has the effect of multiplying w by a
full-rank matrix; such a step can never reach 0.

We explore this task empirically in Figure 3, where we ran a thousand epochs of SGD using both
with- and without-replacement sampling on the example task we constructed in this section. Observe
that for every run (we ran 20 independent runs), with-replacement sampling starts off a little worse,
but quickly moves to zero loss, while without-replacement sampling continues to have nonzero loss
for all time. Note that we needed to use exact arithmetic and look at points very close to the optimum
for this effect to be observable: the figure ranges down to losses of 10−4000. Although not practical,
this experiment does conclusively illustrate empirically that it is possible for with-replacement SGD
to converge asymptotically faster than random-reshuffling, even when no averaging is used and when
step sizes are chosen optimally for both algorithms.4 In future work, it may be interesting to study
whether and to what extent this sort of effect can occur in real learning tasks.

6 Conclusion

In this paper, we compared random reshuffling to with-replacement sampling for stochastic learning
algorithms on noiseless problems. We found a counterexample to two longstanding conjectures from
the literature (Conjectures 1 and 2) that would have implied random reshuffling is always no worse
for many learning algorithms. Using this counterexample, we constructed concrete learning tasks for
which with-replacement sampling outperforms without-replacement sampling in a way that can be
observed empirically, even when step size is allowed to vary. This shows that, contrary to folklore,
random-reshuffling can actually cause learning algorithms to converge asymptotically slower than
with-replacement sampling on a particular problem. New insights will be required to develop theory
that gets around our counterexamples to explain why random-reshuffling appears to consistently
perform better on individual tasks in practice—even for noiseless problems. We hope that this work
will bring us closer to a deeper understanding of the effect of scan order in machine learning.

Broader Impact

We expect that the counterexamples presented in this work will have an impact on the ML theory
community as we further try to understand the effect of scan order in large-scale optimization. We
hope that these counterexamples will help guide future researchers towards proving more variants of
Conjectures 1 and 2 that are true. Beyond this impact on the ML community, this work is primarily
theoretical and does not present any foreseeable societal consequence.

4Observe that this example could also be applied to a “noisy” dataset case with SVRG [13], showing that
the phenomenon of random reshuffling sometimes being worse is limited neither to SGD nor to noisy datasets.
Since the transformation is straightforward it is left as an exercise for the reader.

9

Funding Disclosure

No external funding (apart from usual faculty support by Cornell University) was used in support of
this work. The author has an engagement with SambaNova Systems, but funding from SambaNova
was not used to directly support this work.

References
[1] Rima Alaifari, Xiuyuan Cheng, Lillian B Pierce, and Stefan Steinerberger. On matrix rearrange-

ment inequalities. arXiv preprint arXiv:1904.05239, 2019.
[2] Wafaa Albar, Marius Junge, and Mingyu Zhao. Noncommutative versions of the arithmetic-

geometric mean inequality. arXiv preprint arXiv:1703.00546, 2017.
[3] Wafaa Albar, Marius Junge, and Mingyu Zhao. On the symmetrized arithmetic-geometric mean

inequality for operators. arXiv preprint arXiv:1803.02435, 2018.
[4] Rajendra Bhatia and Priyanka Grover. Norm inequalities related to the matrix geometric mean.

Linear Algebra and its Applications, 437(2):726–733, 2012.
[5] Rajendra Bhatia and Fuad Kittaneh. The matrix arithmetic–geometric mean inequality revisited.

Linear Algebra and its Applications, 428(8-9):2177–2191, 2008.
[6] Samuel Burer and Renato DC Monteiro. A nonlinear programming algorithm for solving

semidefinite programs via low-rank factorization. Mathematical Programming, 95(2):329–357,
2003.

[7] John C Duchi. Commentary on “Towards a noncommutative arithmetic-geometric mean
inequality” by B. Recht and C. Ré. Ré. J. Mach. Learn. Res, 23:11–25, 2012.

[8] Mert Gürbüzbalaban, Asu Ozdaglar, and Pablo Parrilo. Why random reshuffling beats stochastic
gradient descent. Mathematical Programming, 2019.

[9] Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad Mahdavi, and Viveck Cadambe.
Local sgd with periodic averaging: Tighter analysis and adaptive synchronization. In Advances
in Neural Information Processing Systems, pages 11080–11092, 2019.

[10] Jeffery Z HaoChen and Suvrit Sra. Random shuffling beats sgd after finite epochs. arXiv
preprint arXiv:1806.10077, 2018.

[11] Bryan He, Christopher De Sa, Ioannis Mitliagkas, and Christopher Ré. Scan order in Gibbs
sampling: Models in which it matters and bounds on how much. NIPS, 2016.

[12] Arie Israel, Felix Krahmer, and Rachel Ward. An arithmetic–geometric mean inequality for
products of three matrices. Linear Algebra and its Applications, 488:1–12, 2016.

[13] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in neural information processing systems, pages 315–323, 2013.

[14] Zehua Lai and Lek-Heng Lim. Recht-ré noncommutative arithmetic-geometric mean conjecture
is false. ICML, 2020.

[15] Qi Meng, Wei Chen, Yue Wang, Zhi-Ming Ma, and Tie-Yan Liu. Convergence analysis of
distributed stochastic gradient descent with shuffling. Neurocomputing, 337:46–57, 2019.

[16] Dheeraj Nagaraj, Prateek Jain, and Praneeth Netrapalli. SGD without replacement: Sharper
rates for general smooth convex functions. volume 97 of Proceedings of Machine Learning
Research, pages 4703–4711, Long Beach, California, USA, 09–15 Jun 2019. PMLR. URL
http://proceedings.mlr.press/v97/nagaraj19a.html.

[17] Peter Oswald and Weiqi Zhou. Random reordering in sor-type methods. Numerische Mathe-
matik, 135(4):1207–1220, 2017.

[18] Shashank Rajput, Anant Gupta, and Dimitris Papailiopoulos. Closing the convergence gap of
sgd without replacement. arXiv preprint arXiv:2002.10400, 2020.

[19] Benjamin Recht and Christopher Ré. Toward a noncommutative arithmetic-geometric mean
inequality: conjectures, case-studies, and consequences. In Conference on Learning Theory,
pages 11–1, 2012.

[20] Itay Safran and Ohad Shamir. How good is sgd with random shuffling? arXiv preprint
arXiv:1908.00045, 2019.

10

http://proceedings.mlr.press/v97/nagaraj19a.html

[21] Mark Schmidt and Nicolas Le Roux. Fast convergence of stochastic gradient descent under a
strong growth condition. arXiv preprint arXiv:1308.6370, 2013.

[22] Ohad Shamir. Without-replacement sampling for stochastic gradient methods. In Advances in
neural information processing systems, pages 46–54, 2016.

[23] Thomas Strohmer and Roman Vershynin. A randomized kaczmarz algorithm with exponential
convergence. Journal of Fourier Analysis and Applications, 15(2):262, 2009.

[24] Pei Yuan Wu. Products of positive semidefinite matrices. Linear Algebra and Its Applications,
111:53–61, 1988.

[25] Bicheng Ying, Kun Yuan, and Ali H Sayed. Convergence of variance-reduced stochastic
learning under random reshuffling. arXiv preprint arXiv:1708.01383, 2(3):6, 2017.

[26] Bicheng Ying, Kun Yuan, and Ali H Sayed. Variance-reduced stochastic learning under random
reshuffling. arXiv preprint arXiv:1708.01383, 2017.

[27] Bicheng Ying, Kun Yuan, Stefan Vlaski, and Ali H Sayed. On the performance of random
reshuffling in stochastic learning. In 2017 Information Theory and Applications Workshop (ITA),
pages 1–5. IEEE, 2017.

[28] Jian Zhang, Christopher De Sa, Ioannis Mitliagkas, and Christopher Ré. Parallel SGD: When
does averaging help? OptML: Optimization Methods for the Next Generation of Machine
Learning, 2016.

[29] Teng Zhang. A note on the non-commutative arithmetic-geometric mean inequality. arXiv
preprint arXiv:1411.5058, 2014.

11

A Additional Results

In this section, we present additional results that we believe are interesting, but that the main body of
the paper was too short to contain.

A.1 Violating the Conjecture by a Larger Margin

The expression in Section 2.1 makes it seem that our counterexample can violate Conjecture 1 only
by at most a factor of exp(1/2), since this is an upper bound on the magnitude of λ. However, it is
straightforward to use the counterexample to construct violations by an arbitrary factor. If we start
with a sequence of n matrices A1, . . . , An ∈ Rd, we can use the Kronecker product to construct a
sequence of 2n matrices in Rd2 as A1 ⊗ I, A2 ⊗ I, . . . , An ⊗ I, I ⊗A1, . . . , I ⊗An. In this case,

rr2n (A1 ⊗ I, A2 ⊗ I, . . . , An ⊗ I, I ⊗A1, . . . , I ⊗An) = rrn (A1, . . . , An)⊗ rrn (A1, . . . , An) ,

and so its norm will be

‖rr2n (A1 ⊗ I, A2 ⊗ I, . . . , An ⊗ I, I ⊗A1, . . . , I ⊗An)‖ = ‖rrn (A1, . . . , An)‖2

and similarly for srr2n(· · ·). On the other hand, the arithmetic means (rr1 and srr1, respectively) of
these matrices will still be the identity matrix I . This sort of construction can be used to produce
matrix ensembles that violate the inequalities of Conjecture 1 by arbitrarily large factors. Starting
from the case of n = 5 of Section 2.1, we can show that for any q ∈ N, there exists an ensemble of
n = 5q matrices C1, . . . , Cn in dimension d = 5q such that

‖rrn(C1, . . . , Cn)‖ = (19/16)
q ≈ (1.035)

n but rr1(C1, . . . , Cn) = I.

Similarly, there exists an ensemble of n = 10q matrices C1, . . . , Cn in dimension d = 10q such that

‖srrn(C1, . . . , Cn)‖ ≈ (1.183)
q ≈ (1.017)

n but srr1(C1, . . . , Cn) = I.

This places a non-trivial lower bound on any “loose” version of Conjecture 1. Note that Albar et al.
[2] proved the dimension-free bound ‖rrn(A1, . . . , An)‖ ≤ nn · ‖rr1(A1, . . . , An)‖n. Our lower
bound here shows that this constant nn could only at best be improved to O(1)n.

B Another Example: Markov chain Monte Carlo

In the main body of the text, we presented examples of learning tasks that were based on stochastic
gradient descent. Another common class of ML algorithms where scan order matters is Markov chain
Monte Carlo. Suppose that we have some unknown distribution π over some sample space Ω we
wish to sample from, and P1, P2, . . . , Pn are Markov transition operators each of which is reversible
and has stationary distribution π (but which are not necessarily ergodic). The classic example of this
sort of setup is Gibbs sampling, in which each operator Pi corresponds to the action of resampling a
single variable from a joint distribution π conditioned on the values of the other variables.

We consider two different ways of combining the individual transition operators into a single com-
pound operator. With-replacement scan involves running n inner iterations, where at each iteration
the algorithm chooses a transition operator from P1, . . . , Pn with replacement, then transitions the
state according to that operator. We denote this compound operator Pwith. Without-replacement scan
does the same thing, but samples without replacement. We denote this compound operator Pwithout.
Note that

Pwith =

(
1

n

n∑
i=1

Pi

)n
and Pwithout =

1

n!

∑
σ∈P(n)

n∏
i=1

Pσ(i),

from which we can see the connection to Conjecture 1.

It is natural to ask the question: how fast do these algorithms converge? The standard way to measure
this is with the standard total variation distance from stationarity after t steps, which is the maximum
over all possible initial states of the total variation distance between the distribution of the Markov
chain after t steps and its stationary distribution. That is,

d(P, t) = max
x∈Ω

∥∥P t(x, ·)− π∥∥
TV

= max
x∈Ω

1

2

∑
y∈Ω

∣∣P t(x, y)− π(y)
∣∣ .

12

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
iteration (t)

10 4

10 3

10 2

10 1

100

101

TV
-d

ist
an

ce
 ra

tio

d(
P w

ith
,t

)
d(

P w
ith

ou
t,t

)

n = 5
n = 10
n = 17
n = 26
n = 37

Figure 4: Distance-to-stationarity ratio of with-replacement versus without-replacement scan order
for our constructed MCMC task. Notice that the without-replacement algorithm converges at a faster
rate than the with-replacement algorithm for most values of n.

It would be intuitive to conjecture that it always holds (at least for sufficiently large t) that random
reshuffling converges faster than standard with-replacement random sampling of the Pi, that is,

d (Pwithout, t) ≤ d (Pwith, t) . (4)

However, here we show that this is not necessarily always the case, by adapting our counterexample
from Section 2. Consider the matrices

Pi =
1

2n · (Ai)ii
·Ai ⊗

[
1 −1
−1 1

]
+

1

2n
· 11T .

Notice that, since (Ai)ii is the largest-magnitude entry of Ai, this matrix is guaranteed to be non-
negative, and since

Pi1 =
1

2n · (Ai)ii
·(Ai1)⊗

([
1 −1
−1 1

]
1

)
+

1

2n
·11T1 =

1

2n · (Ai)ii
·(Ai1)⊗(0)+

1

2n
·1·2n = 1,

it is a stochastic matrix (and so it is a Markov operator over a state space of size 2n). Additionally,
since Pi is symmetric (by construction, since the Kronecker product of symmetric matrices is
symmetric), it follows that each Pi must be reversible with stationary distribution π = 1

2n . When
n − 1 is a perfect square, Ai is rational, and so it is straightforward to compute the compound
operators Pwith and Pwithout directly in exact arithmetic. We did this and computed the distances
to stationarity d (Pwithout, t) and d (Pwith, t) for n ∈ {5, 10, 17, 26, 37} and for T = 20 total outer
iterations. Figure 4 plots the ratio of these distances to stationarity. Notice that if (4) were true, we
would expect these series to all lie above the dotted black line, at least for sufficiently large t. This
shows that random reshuffling can converge more slowly than standard with-replacement random
sampling, even for Markov chain Monte Carlo.

We should note here that our example is extremely artificial for MCMC, especially because both the
with-replacement and without-replacement chains converge very fast. In practice even one iteration of
either the with-replacement or without-replacement chains would produce estimates that are more than
accurate enough. It is possible—even likely—that some analogue of the random-reshuffling-is-better
conjecture holds for MCMC methods under more typical conditions, such as Gibbs sampling.

C Derivation of Section 2.1

In this section, we provide the derivation for Statement 1, the formula for the random-reshuffled
product of our counterexample matrices.

13

We first state without proof the following facts about the vectors yi, which can be easily checked.

1T yi = 0,

yTi yj =
−1

n(n− 1)
,

n∑
i=1

yi = 0, and

∑
i6=j

yiy
T
j = −

n∑
i=1

yiy
T
i =

1

n(n− 1)
11T − 1

n− 1
I.

Starting from the matrix family as defined in Section 2.1, for any permutation σ and for any k > 0,
the product of an even number of the permuted matrices Ak − I can be written as

2k∏
i=1

(
Aσ(i) − I

)
=

2k∏
i=1

(
1yTi + yi1

T
)

=

(
−1

n(n− 1)

)k
· nk−111T +

(
−1

n(n− 1)

)k−1

nkyσ(1)y
T
σ(2k)

=

(
−1

n− 1

)k (
11T

n
− n(n− 1) · yσ(1)y

T
σ(2k)

)
,

and similarly for an odd number of matrices
2k−1∏
i=1

(
Aσ(i) − I

)
=

(
−1

n− 1

)k−1 (
1yTσ(2k−1) + yσ(1)1

T
)

because there are only two “paths” through the product since any 1T yi = 0. Therefore,

rr2k−1(A1 − I, . . . , An − I) =
1

n!

∑
σ∈P(n)

(
−1

n− 1

)k−1 (
1yTσ(2k−1) + yσ(1)1

T
)

=

(
−1

n− 1

)k−1
1

(
1

n

n∑
i=1

yi

)T
+

(
1

n

n∑
i=1

yi

)
1T

 = 0,

and

rr2k(A1 − I, . . . , An − I) =
1

n!

∑
σ∈P(n)

(
−1

n− 1

)k (
11T

n
− n(n− 1) · yσ(1)y

T
σ(2k)

)

=
1

n(n− 1)

∑
i 6=j

(
−1

n− 1

)k (
11T

n
− n(n− 1) · yiyTj

)

=

(
−1

n− 1

)k11T

n
−
∑
i6=j

yiy
T
j

=

(
−1

n− 1

)k (
1

n− 1
I +

n− 2

n(n− 1)
11T

)
.

We can write these in a single expression as, for k > 0,

rrk(A1 − I, . . . , An − I) =
1

2

((
i√
n− 1

)k
+

(
−i√
n− 1

)k)(
1

n− 1
I +

n− 2

n(n− 1)
11T

)
where i is the imaginary unit. If we define

Cn =
1

n− 1
I +

n− 2

n(n− 1)
11T ,

14

then by the binomial theorem, for any m ∈ N, the original random-reshuffled product can be written
as

rrm(A1, . . . , An) = I +

m∑
k=1

(
m

k

)
rrk(A1 − I, . . . , An − I)

= I +
1

2
· Cn ·

m∑
k=1

(
m

k

)((
i√
n− 1

)k
+

(
−i√
n− 1

)k)

= I +
1

2
· Cn ·

((
1 +

i√
n− 1

)m
− 1 +

(
1− i√

n− 1

)m
− 1

)
= I + Cn ·

((
1 +

1

n− 1

)m/2
· cos

(
m · arctan

(
1√
n− 1

))
− 1

)
.

In particular, since Cn1 = 1, it follows that one eigenvalue of this will be

λ =

(
1 +

1

n− 1

)m/2
· cos

(
m · arctan

(
1√
n− 1

))
.

This is what we set out to prove. Also note that for large n, if m = n,

λ ≈ exp

(
1

2

)
· cos

(√
n
)
,

so we should expect to find n for which |λ| > 1 fairly easily.

D Derivation for Section 2.2

In this section, we provide derivation details for our claims in Section 2.2. First, we note that since
Ai has eigenvalues in {0, 1, 2} with multiplicity 1 on the 0 and 2, the matrix Ai(Ai− I) is just 2uuT

where u is the unit eigenvector with eigenvalue 2. So, if B2
i = Ai,

Ai +

√
2− 2

2
·Ai(Ai − I) = Bi.

Now, recall that Bi satisfies PσBiPTσ = Bσ(i). So,

srrn(B1, . . . , Bn) =
1

n!

∑
σ∈P(n)

(
n∏
i=1

Bσ(i)

)T (n∏
i=1

Bσ(i)

)

=
1

n!

∑
σ∈P(n)

(
n∏
i=1

PσBiP
T
σ

)T (n∏
i=1

PσBiP
T
σ

)

=
1

n!

∑
σ∈P(n)

Pσ

(
n∏
i=1

Bi

)T (n∏
i=1

Bi

)
PTσ .

Now, since we know that 1 must be an eigenvector of srrn(B1, . . . , Bn), it follows that the corre-
sponding eigenvalue must be

λ =
1

1T1
· 1T srrn(B1, . . . , Bn)1

=
1

n
· 1

n!

∑
σ∈P(n)

1TPσ

(
n∏
i=1

Bi

)T (n∏
i=1

Bi

)
PTσ 1

=
1

n
· 1

n!

∑
σ∈P(n)

1T

(
n∏
i=1

Bi

)T (n∏
i=1

Bi

)
1

=
1

n
· 1T

(
n∏
i=1

Bi

)T (n∏
i=1

Bi

)
1.

15

We can easily compute this directly to get the eigenvalue. Doing this produces the value given in the
body of the paper. We can validate this with the following Julia code.

1 using LinearAlgebra
2

3 # define a type for numbers of the form [x + y * sqrt(2)]
4 struct QR2 <: Number
5 x :: Rational{BigInt};
6 y :: Rational{BigInt};
7 end
8

9 import Base: +, -, *, //, ==, zero, one, Float64, promote_rule
10 *(a::QR2, b::QR2) = QR2(a.x * b.x + 2 * a.y * b.y, a.x * b.y + a.y * b.x);
11 +(a::QR2, b::QR2) = QR2(a.x + b.x, a.y + b.y);
12 -(a::QR2, b::QR2) = QR2(a.x - b.x, a.y - b.y);
13 -(b::QR2) = QR2(-b.x, -b.y);
14 //(a::QR2, q) = QR2(a.x // BigInt(q), a.y // BigInt(q));
15 zero(::Type{QR2}) = QR2(0, 0);
16 one(::Type{QR2}) = QR2(1, 0);
17 zero(a::QR2) = QR2(0, 0);
18 one(a::QR2) = QR2(1, 0);
19 Float64(a::QR2) = Float64(BigFloat(a.x) + sqrt(BigFloat(2)) * BigFloat(a.y));
20 ==(a::QR2, b::QR2) = (a.x == b.x) && (a.y == b.y);
21 QR2(x::Rational) = QR2(x, 0);
22 QR2(x::Int64) = QR2(BigInt(x) // 1, 0);
23 promote_rule(::Type{QR2}, ::Type{Integer}) = QR2
24 promote_rule(::Type{QR2}, ::Type{Int64}) = QR2
25 promote_rule(::Type{QR2}, ::Type{Rational}) = QR2
26 promote_rule(::Type{QR2}, ::Type{Rational{BigInt}}) = QR2
27

28 # the parameters for the example
29 n = 10;
30 sqrtn1 = BigInt(sqrt(n-1));
31

32 # define the A matrices
33 ys = [[(k == i) ? sqrtn1//n : -1//(n*sqrtn1) for i = 1:n] for k = 1:n];
34 As = [I + ones(BigInt,n) * y' + y * ones(BigInt,n)' for y in ys];
35

36 # define the B matrices
37 Bs = [A .+ ((QR2(0,1) - QR2(2,0))//2) * A * (A - I) for A in As];
38

39 # assert that, indeed, B^2 = A
40 for i = 1:n
41 @assert(Bs[i]^2 == QR2.(As[i]));
42 end
43

44 # compute the eigenvalue
45 lambda = sum(transpose(prod(Bs)) * (prod(Bs))) // n
46 println(lambda);
47 println(Float64(lambda));
48

49 # assert that it is the value in the paper
50 @assert(lambda == QR2(16623165607286458//16677181699666569,

2195717144015980//16677181699666569));↪→
51

52 # validate that this also works in floating point
53 Asfp = [Float64.(A) for A in As];
54 Bsfp = [A .+ ((sqrt(2) - 2)/2) * (A^2 - A) for A in Asfp];
55

56 # assert that, indeed, B^2 = A, up to some tolerance, and that B is PSD
57 tol = 1e-8;
58 for i = 1:n
59 @assert(all(eigvals(Bsfp[i]) .>= -tol));
60 @assert(maximum(Bsfp[i]^2 .- Asfp[i]) < tol);

16

61 end
62

63 # compute the floating-point estimate of the eigenvalue
64 lambdafp = sum(transpose(prod(Bsfp)) * (prod(Bsfp))) / n;
65 println(lambdafp);
66

67 # check that it's equal to the value we computed exactly
68 @assert(abs(lambdafp - Float64(lambda)) < tol);

E Code to Verify the Counterexample to Conjecture 2

Here, we include our Julia code to verify that the counterexample described in Section 2.3 is actually
a counterexample to Conjecture 2. Our code here also re-computes the numeric constants given in
that section for the norms of the various matrices.

1 using Statistics
2 using Combinatorics
3 using LinearAlgebra
4

5 # we first construct a number type to do arithmetic in the field of Q(sqrt(3))
6 struct QR3 <: Number
7 x :: Rational{BigInt};
8 y :: Rational{BigInt};
9 end

10

11 import Base.+
12 import Base.-
13 import Base.*
14 import Base.//
15 import Base.==
16 import Base.zero
17 import Base.conj
18 import Base.sqrt
19 import Base.one
20 import Base.isless
21 import Base.Float64
22 import Base.promote_rule
23

24 function *(a::QR3, b::QR3)
25 return QR3(a.x * b.x + 3 * a.y * b.y, a.x * b.y + a.y * b.x);
26 end
27

28 function +(a::QR3, b::QR3)
29 return QR3(a.x + b.x, a.y + b.y);
30 end
31

32 function -(a::QR3, b::QR3)
33 return QR3(a.x - b.x, a.y - b.y);
34 end
35

36 function -(b::QR3)
37 return QR3(-b.x, -b.y);
38 end
39

40 function //(a::QR3, q::I) where {I <: Integer}
41 return QR3(a.x // BigInt(q), a.y // BigInt(q));
42 end
43

44 function zero(::Type{QR3})
45 return QR3(0, 0);
46 end
47

17

48 function one(::Type{QR3})
49 return QR3(1, 0);
50 end
51

52 function zero(a::QR3)
53 return QR3(0, 0);
54 end
55

56 function conj(a::QR3)
57 return a;
58 end
59

60 function isless(a::QR3, b::QR3)
61 cx = a.x - b.x;
62 cy = a.y - b.y;
63 if (cx >= 0)&&(cy >= 0)
64 return false;
65 elseif (cx < 0)&&(cy < 0)
66 return true;
67 elseif (cx < 0)
68 return cx^2 > 3 * cy^2;
69 elseif (cy < 0)
70 return 3 * cy^2 > cx^2;
71 else
72 error();
73 end
74 end
75

76 function one(a::QR3)
77 return QR3(1, 0);
78 end
79

80 function Float64(a::QR3)
81 return Float64(BigFloat(a.x) + sqrt(BigFloat(3)) * BigFloat(a.y));
82 end
83

84 function ==(a::QR3, b::QR3)
85 return (a.x == b.x) && (a.y == b.y);
86 end
87

88 function QR3(x::Rational)
89 return QR3(x, 0);
90 end
91

92 function QR3(x::Int64)
93 return QR3(BigInt(x) // 1, 0);
94 end
95

96 function Rational(a::QR3)
97 @assert(a.y == 0);
98 return a.x;
99 end

100

101 promote_rule(::Type{QR3}, ::Type{Integer}) = QR3
102 promote_rule(::Type{QR3}, ::Type{Int64}) = QR3
103 promote_rule(::Type{QR3}, ::Type{Rational}) = QR3
104 promote_rule(::Type{QR3}, ::Type{Rational{BigInt}}) = QR3
105

106 # a function to try to compute the square root of a rational number, or error
otherwise↪→

107 function sqrtq3(x::Rational{BigInt})
108 n = x.num * x.den;
109 if (sqrt(n) == floor(sqrt(n)))
110 return QR3(BigInt(sqrt(n))//x.den, 0);
111 elseif (sqrt(n/3) == floor(sqrt(n/3)))

18

112 return QR3(0, BigInt(sqrt(n/3))//x.den);
113 else
114 error();
115 end
116 end
117

118 # every matrix we'll be computing the norm of is rank-1,
119 # so its l2 norm is equal to the square root of the trace of A*A'
120 function l2norm(A::Array{QR3,2})
121 return sqrtq3(Rational(tr(A*A')));
122 end
123

124 # define the counterexample dataset
125 n = 6;
126 us = [[QR3(0,1//2), QR3(1//2,0)], [QR3(1//2,0), QR3(0,1//2)], [QR3(0,0), QR3(1,0)],

[QR3(-1//2,0), QR3(0,1//2)], [QR3(0,-1//2), QR3(1//2,0)], [QR3(-1,0),
QR3(0,0)]];

↪→
↪→

127 As = [u*u' for u in us];
128

129

130 # on the left side of the inequality of Conjecture 2
131 left_expr = maximum(l2norm(prod(p)) for p in permutations(As));
132 println("left side = $left_expr = $(Float64(left_expr))")
133

134

135 # on the right side of the inequality of Conjecture 2
136 NX = [l2norm(As[i1]*As[i2]*As[i3]*As[i4]*As[i5]*As[i6]) for i1=1:n, i2=1:n, i3=1:n,

i4=1:n, i5=1:n, i6=1:n];↪→
137

138 RX = -1 * ones(QR3,6,6,6,6,6,6);
139 for i1=1:n, i2=1:n, i3=1:n, i4=1:n, i5=1:n, i6=1:n
140 if (RX[i1,i2,i3,i4,i5,i6] == -1)
141 lmax = maximum(NX[p[i1],p[i2],p[i3],p[i4],p[i5],p[i6]] for p in

permutations(1:n));↪→
142 for p in permutations(1:n)
143 RX[p[i1],p[i2],p[i3],p[i4],p[i5],p[i6]] = lmax;
144 end
145 end
146 end
147

148 right_expr = sum(RX)//length(RX);
149 println("right side = $right_expr = $(Float64(right_expr))")

F Proof of Theorem 1

The proof of Theorem 1 is, as stated in the main body of the paper, a straightforward combination of
the following two lemmas. The main idea is that we can expand the rrk expression approximately
as a polynomial in α, and then consider only the dominant quadratic α2 term, which we can bound
directly.

Lemma 3 (Binomial Theorem for Random Reshuffling). For any symmetric matrices X1, . . . , Xn,
and any constants α and β,

rrk(αI + βX1, αI + βX2, . . . , αI + βXn) =
∑k
i=0

(
k
i

)
αk−iβkrri(X1, X2, . . . , Xn).

Lemma 4. For any symmetric matrices X1, . . . , Xn ∈ Rd, and for any u ∈ Rd such that ‖u‖ = 1,

uT (rr2(X1, . . . , Xn))u ≤ ‖rr1(X1, . . . , Xn)‖2

and equality can hold only if there exists a λ ∈ R such that for all i ∈ {1, . . . , n}, u is an eigenvector
of Xi with eigenvalue λ, that is Xiu = λu.

We start by proving the lemmas, then prove the theorem.

19

F.1 Proofs of Lemmas

In this section, we prove the lemmas presented in Section 4. We start by proving the following lemma,
which will be useful for proving Lemma 4.

Lemma 5. Let ω be a primitive nth root of unity. Then, for any symmetric real matrices X1, . . . , Xn,

1

n · (n− 1)

n∑
i=1

∑
j 6=i

XiXj =

(
1

n

n∑
i=1

Xi

)2

− 1

n!

∑
σ∈P(n)

(
1

n

n∑
i=1

ωσ(i)Xi

)∗(
1

n

n∑
i=1

ωσ(i)Xi

)
.

Proof. It is clear that the expressions on both sides of this equation will contain only terms of the
form XiXj , where possibly i = j. When i = j, the left side will have no terms in X2

i , and the right
side will have

1

n2
X2
i −

1

n!

∑
σ∈P(n)

(
1

n
ωσ(i)Xi

)∗(
1

n
ωσ(i)Xi

)
=

1

n2
X2
i −

1

n!

∑
σ∈P(n)

(
1

n2
X2
i

)

=
1

n2
X2
i −

(
1

n2
X2
i

)
= 0,

where this holds since
(
ωk
)
·
(
ωk
)∗

= 1 because ω is a root of unity. This is what we want for the
i = j case.

On the other hand, for i 6= j, the left side will have just the term 1
n·(n−1) ·XiXj . On the right side,

we have

1

n2
XiXj −

1

n!

∑
σ∈P(n)

(
1

n
ωσ(i)Xi

)∗(
1

n
ωσ(j)Xj

)

=
1

n2
XiXj −

1

n!

∑
σ∈P(n)

(
1

n2
ωσ(j)−σ(i)XiXj

)

=
1

n2
XiXj

1− 1

n!

∑
σ∈P(n)

ωσ(i)−σ(j)

=

1

n2
XiXj

1− 1

n · (n− 1)

n∑
i=1

∑
j 6=i

ωj−i

=

1

n2
XiXj

1− 1

n · (n− 1)

 n∑
i=1

n∑
j=1

ωj−i −
n∑
i=1

ωi−i

=

1

n2
XiXj

1− 1

n · (n− 1)

(n∑
i=1

ω−i

) n∑
j=1

ωj

− n∑
i=1

1

=

1

n2
XiXj

(
1− 1

n · (n− 1)
(0− n)

)
=

1

n2
XiXj

(
1 +

1

n− 1

)
=

1

n · (n− 1)
XiXj .

This is the desired result.

Using this lemma, we can now prove Lemma 4.

20

Lemma 4. For any symmetric matrices X1, . . . , Xn ∈ Rd, and for any u ∈ Rd such that ‖u‖ = 1,

uT (rr2(X1, . . . , Xn))u ≤ ‖rr1(X1, . . . , Xn)‖2

and equality can hold only if there exists a λ ∈ R such that for all i ∈ {1, . . . , n}, u is an eigenvector
of Xi with eigenvalue λ, that is Xiu = λu.

Proof. By Lemma 5,

uT

 1

n · (n− 1)

n∑
i=1

∑
j 6=i

XiXj

u = uT

(
1

n

n∑
i=1

Xi

)2

u

− uT
 1

n!

∑
σ∈P(n)

(
1

n

n∑
i=1

ωσ(i)Xi

)∗(
1

n

n∑
i=1

ωσ(i)Xi

)u.

Since each term in the rightmost part of this expression is of the form A∗A, it follows that the
resulting quadratic form must be positive semidefinite, and so

uT

 1

n!

∑
σ∈P(n)

(
1

n

n∑
i=1

ωσ(i)Xi

)∗(
1

n

n∑
i=1

ωσ(i)Xi

)u ≥ 0.

So,

uT

 1

n · (n− 1)

n∑
i=1

∑
j 6=i

XiXj

u ≤ uT
(

1

n

n∑
i=1

Xi

)2

u.

The first part of the lemma follows from the simple observation that by definition

uT

(
1

n

n∑
i=1

Xi

)2

u =

∥∥∥∥∥
(

1

n

n∑
i=1

Xi

)
u

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1

n

n∑
i=1

Xi

∥∥∥∥∥
2

‖u‖2 =

∥∥∥∥∥ 1

n

n∑
i=1

Xi

∥∥∥∥∥
2

.

To prove the second part of the theorem, notice that since we just showed that

uT

 1

n · (n− 1)

n∑
i=1

∑
j 6=i

XiXj

u ≤ uT
(

1

n

n∑
i=1

Xi

)2

u ≤

∥∥∥∥∥ 1

n

n∑
i=1

Xi

∥∥∥∥∥
2

,

equality between the left and right terms of this statement can only hold if both stated inequalities hold
with equality. It is well-known that for symmetric matrices A and unit vectors u, uTA2u = ‖A‖2
only if u is an eigenvector of A. Thus, our right inequality will hold with equality only if there exists
a λ ∈ R such that (

1

n

n∑
i=1

Xi

)
u = λu.

On the other hand, by Lemma 1, the left inequality will hold with equality only when

uT

 1

n!

∑
σ∈P(n)

(
1

n

n∑
i=1

ωσ(i)Xi

)∗(
1

n

n∑
i=1

ωσ(i)Xi

)u = 0.

This only happens when

1

n!

∑
σ∈P(n)

uT

(
1

n

n∑
i=1

ωσ(i)Xi

)∗(
1

n

n∑
i=1

ωσ(i)Xi

)
u = 0.

Since each of the matrices of the formAA∗ produces a positive semidefinite quadratic form, it follows
that for every permutation σ,

uT

(
1

n

n∑
i=1

ωσ(i)Xi

)∗(
1

n

n∑
i=1

ωσ(i)Xi

)
u ≥ 0.

21

But then, equality can be attained only when all of these terms are 0, that is

uT

(
1

n

n∑
i=1

ωσ(i)Xi

)∗(
1

n

n∑
i=1

ωσ(i)Xi

)
u = 0 for every σ ∈ P(n).

Since

uT

(
1

n

n∑
i=1

ωσ(i)Xi

)∗(
1

n

n∑
i=1

ωσ(i)Xi

)
u =

∥∥∥∥∥
(

1

n

n∑
i=1

ωσ(i)Xi

)
u

∥∥∥∥∥
2

,

it follows that this only holds when(
1

n

n∑
i=1

ωσ(i)Xi

)
u = 0 for every σ ∈ P(n).

Since this holds for any permutation, it follows that it holds for any scaling vector in the span of the
permutations. Explicitly,

n∑
i=1

biXiu = 0 for every b ∈ span

ω

σ(1)

...
ωσ(n)

∣∣∣∣∣∣∣ σ ∈ P(n)

 .

It is not hard to see that this span is just the set

span

ω

σ(1)

...
ωσ(n)

∣∣∣∣∣∣∣ σ ∈ P(n)

 =

{
b

∣∣∣∣∣
n∑
i=1

bi = 0

}
.

In particular, it must hold that, for any j

Xju−
1

n

n∑
i=1

Xiu = 0.

Now adding our earlier derivation that (
1

n

n∑
i=1

Xi

)
u = λu

gives us
Xju = λu,

which proves the lemma.

Next, we prove Lemma 3, the binomial theorem for random reshuffling.

Lemma 3 (Binomial Theorem for Random Reshuffling) For any symmetric matrices
X1, . . . , Xn, and any constants α and β,

rrk(αI + βX1, αI + βX2, . . . , αI + βXn) =

k∑
i=0

(
k

i

)
αk−iβkrri(X1, X2, . . . , Xn).

Proof. First, note that for any A1, A2, . . . , An, we can write

rrk(A1, A2, . . . , An) =
1

n!

∂

∂η1

∂

∂η2
· · · ∂

∂ηn

(
n∑
i=1

ηiAi

)k
·

(
n∑
i=1

ηi

)n−k
.

This holds because(
n∑
i=1

ηiAi

)k
· (

n∑
i=1

ηi)
n−k =

∑
σ:{1,...,n}→{1,...,n}

(
k∏
i=1

ησ(i)Aσ(i)

)(
n∏

i=k+1

ηi

)
,

22

where this sum ranges over all functions σ from {1, . . . , n} to itself. The only terms of this sum that
will survive the differentiation operation are those for which σ is a permutation (since otherwise there
will be some ηi that does not appear in the term, and it will be zeroed out by the partial differentiation
with respect to that ηi). So,

1

n!

∂

∂η1

∂

∂η2
· · · ∂

∂ηn

(
n∑
i=1

ηiAi

)k
·

(
n∑
i=1

ηi

)n−k
=

1

n!

∑
σ∈P(n)

k∏
i=1

(αI + βXi)

which is rrk(A1, A2, . . . , An) by definition.

Applying this to our expression in the lemma statement,

rrk(αI + βX1, . . . , αI + βXn) =
1

n!

∂

∂η1
· · · ∂

∂ηn

(
n∑
i=1

ηi (αI + βXi)

)k
·

(
n∑
i=1

ηi

)n−k

=
1

n!

∂

∂η1
· · · ∂

∂ηn

(
α

n∑
i=1

ηiI + β

n∑
i=1

ηiXi

)k
·

(
n∑
i=1

ηi

)n−k
Applying the binomial theorem to this inner term gives us(

α

n∑
i=1

ηiI + β

n∑
i=1

ηiXi

)k
=

k∑
j=0

(
k

j

)(
α

n∑
i=1

ηiI

)k−j (
β

n∑
i=1

ηiXi

)j

=

k∑
j=0

(
k

j

)
αk−jβk

(
n∑
i=1

ηi

)k−j (n∑
i=1

ηiXi

)j
.

Substituting this into our expression above gives

rrk(αI + βX1, . . . , αI + βXn) =
1

n!

∂

∂η1
· · · ∂

∂ηn

k∑
j=0

(
k

j

)
αk−jβk

(
n∑
i=1

ηiXi

)j
·

(
n∑
i=1

ηi

)n−j

=

k∑
j=0

(
k

j

)
αk−jβk

1

n!

∂

∂η1
· · · ∂

∂ηn

(
n∑
i=1

ηiXi

)j
·

(
n∑
i=1

ηi

)n−j

=

k∑
j=0

(
k

j

)
αk−jβkrrj(X1, . . . , Xn).

This proves the lemma.

F.2 Main Body of Proof of Theorem 1

In this section, we prove Theorem 1, which shows that Conjecture 1 holds with strict inequality for
sufficiently small step sizes (as long as the matrix ensemble is nontrivial).

Theorem 1 (Matrix AMGM Inequality, Sufficiently Small Step Size) Let A1, . . . , An be a
collection of continuously twice-differentiable functions from R to Sd, that all satisfy Ai(0) = I and
that are non-trivial in the sense that they have no eigenvalue/eigenvector pairs shared among all
the matrices A′1(0), A′2(0), . . . , A′n(0). Then for any 2 ≤ k ≤ n, there exists an αmax > 0 and a
constant C > 0 such that such that for all 0 < α ≤ αmax,

‖rrk(A1(α), A2(α), . . . , An(α))‖ < ‖rr1(A1(α), A2(α), . . . , An(α))‖k − α2C.

Proof. First, note that since when α = 0,

rrk(A1(α), A2(α), . . . , An(α)) = rr1(A1(α), A2(α), . . . , An(α)) = I,

23

by continuity of these expressions in α, for sufficiently small positive α it must hold that both

rrk(A1(α), A2(α), . . . , An(α))

and
rr1(A1(α), A2(α), . . . , An(α))

are positive definite. We will restrict our attention to α in this range (by setting αmax appropriately).

Next, define β > 0 as some number such that for any α in this range,

Ai(α)− I
α

+ βI � 0.

The existence of such a β is guaranteed because Ai is continuously differentiable. Define

Hi(α) =
Ai(α)− I

α
+ βI.

Notice now that
Ai(α) = αHi + (1− αβ)I

So, by Lemma 3,

rrk(A1(α), A2(α), . . . , An(α)) = rrk(αH1(α) + (1− αβ)I, . . . , αHn(α) + (1− αβ)I)

=

k∑
i=0

(
k

i

)
αi(1− αβ)k−irri(H1(α), . . . ,Hn(α)).

On the other hand, on the right side, by the binomial theorem,

(rr1(A1(α), A2(α), . . . , An(α)))
k

= (rr1(αH1 + (1− αβ)I, . . . , αHn + (1− αβ)I))
k

=

(
(1− αβ)I +

α

n

n∑
i=1

Hi(α)

)k

=

k∑
i=0

(
k

i

)
αi · (1− αβ)k−i ·

(
1

n

n∑
i=1

Hi(α)

)k

=

k∑
i=0

(
k

i

)
αi · (1− αβ)k−i · (rr1(H1(α), . . . ,Hn(α)))

k
.

Next, note that we can complete Hi to be a continuously differentiable function by defining

Hi(0) = lim
α→0

Hi(α) = A′i(0) + βI.

This means that, by our assumption, H1(0), H2(0), . . . ,Hn(0) do not share any eigen-
value/eigenvector pairs. Therefore, by Lemma 4, we know that for any u

uT rr2(H1(0), H2(0), . . . ,Hn(0))u < ‖rr1(H1(0), H2(0), . . . ,Hn(0))‖2 ,

(since this can not hold with equality because of our assumption about the eigenvectors of the Hi).
Define b as the constant such that

2b = ‖rr1(H1(0), H2(0), . . . ,Hn(0))‖2 − λmax (rr2(H1(0), H2(0), . . . ,Hn(0))) .

We know that b > 0 because of our result from Lemma 4. By continuity of the Hi and all these other
expressions, for all sufficiently small α,

‖rr1(H1(α), H2(α), . . . ,Hn(α))‖2 − λmax (rr2(H1(α), H2(α), . . . ,Hn(α))) ≥ b.

We will restrict our attention to α such that this holds (again by setting αmax appropriately). In a
similar way, we also restrict our attention to α such that 1− αβ > 0.

Let c be a constant such that for any i ∈ {1, . . . , n}, and any α in our range.

‖rri(H1(α), . . . ,Hn(α))‖ ≤ ci

24

Such a c must exist because it is a bound on a continuous function over a bounded interval. For any
unit vector u, and any α > 0 in our restricted sufficiently-small range

uT rrk(A1(α), . . . , An(α))u

=

k∑
i=0

(
k

i

)
αi(1− αβ)k−iuT rri(H1(α), . . . ,Hn(α))u

= (1− αβ)k +

(
n

1

)
· α · (1− αβ)k−1 · uT rr1(H1(α), . . . ,Hn(α))u

+

(
n

2

)
· α2 · (1− αβ)k−2 · uT rr2(H1(α), . . . ,Hn(α))u

+

k∑
i=3

(
k

i

)
· αi(1− αβ)k−iuT rri(H1(α), . . . ,Hn(α))u

≤ (1− αβ)k +

(
n

1

)
· α · (1− αβ)k−1 · ‖rr1(H1(α), . . . ,Hn(α))‖

+

(
n

2

)
· α2 · (1− αβ)k−2 ·

(
‖rr1(H1(α), . . . ,Hn(α))‖2 − b

)
+

k∑
i=3

(
k

i

)
· αi(1− αβ)k−i ‖rri(H1(α), . . . ,Hn(α))‖

≤ (1− αβ)k +

(
n

1

)
· α · (1− αβ)k−1 · ‖rr1(H1(α), . . . ,Hn(α))‖

+

(
n

2

)
· α2 · (1− αβ)k−2 ·

(
‖rr1(H1(α), . . . ,Hn(α))‖2 − b

)
+

k∑
i=3

(
k

i

)
· αi · (1− αβ)k−i · ci

≤ (1− αβ)k +

(
n

1

)
· α · (1− αβ)k−1 · ‖rr1(H1(α), . . . ,Hn(α))‖

+

(
n

2

)
· α2 · (1− αβ)k−2 ·

(
‖rr1(H1(α), . . . ,Hn(α))‖2 − b

)
+

k∑
i=3

(
k

i

)
· αi · (1− αβ)k−i ·

(
ci + ‖rr1(H1(α), . . . ,Hn(α))‖i

)
≤ ((1− αβ) + α ‖rr1(H1(α), . . . ,Hn(α))‖)k

−
(
n

2

)
· α2 · (1− αβ)k−2 · b

+

k∑
i=3

(
k

i

)
· αi · (1− αβ)k−i · ci.

Since all the Hi are positive semidefinite,

(1− αβ) + α ‖rr1(H1(α), . . . ,Hn(α))‖ = (1− αβ) +
α

n

∥∥∥∥∥
n∑
i=1

Hi(α)

∥∥∥∥∥
=

∥∥∥∥∥(1− αβ)I +
α

n

n∑
i=1

Hi(α)

∥∥∥∥∥
= ‖rr1(A1(α), . . . , An(α))‖ .

25

So, for any unit vector u,

uT rrk(A1(α), . . . , An(α))u ≤ ‖rr1(A1(α), . . . , An(α))‖k

−
(
n

2

)
· α2 · (1− αβ)k−2 · b

+

k∑
i=3

(
k

i

)
· αi · (1− αβ)k−i · ci.

Since we chose α small enough that rrk(A1(α), . . . , An(α)) is positive semidefinite, and for any
positive semidefinite matrix X there exists a unit vector u such that ‖X‖ = uTXu, it follows that

‖rrk(A1(α), . . . , An(α))‖ ≤ ‖rr1(A1(α), . . . , An(α))‖k

−
(
n

2

)
· α2 · (1− αβ)k−2 · b

+

k∑
i=3

(
k

i

)
· αi · (1− αβ)k−i · ci.

Since the expression

−
(
n

2

)
· α2 · (1− αβ)k−2 · b+

k∑
i=3

(
k

i

)
· αi · (1− αβ)k−i · ci = −n(n− 1)b

2
· α2 +O(α3),

it follows that for sufficiently small α,

−
(
n

2

)
· α2 · (1− αβ)k−2 · b+

k∑
i=3

(
k

i

)
· αi · (1− αβ)k−i · ci < −n(n− 1)b

4
· α2.

Now letting C = n(n−1)b
4 and letting αmax denote the smallest bound on α we have assumed during

this proof (including the “sufficiently small” bound we just invoked), it follows that

‖rrk(A1(α), . . . , An(α))‖ < ‖rr1(A1(α), . . . , An(α))‖k − α2C.

This is what we wanted to prove.

G Proof of Corollary 1

In this section, we prove Corollary 1, which characterizes the convergence of with-replacement versus
without-replacement parallel SGD when a diminishing step size scheme is used.

Corollary 1 Consider Algorithm 1 on a non-trivial noiseless convex quadratic using any M
(includingM = 1, ordinary sequential SGD). Suppose that the step size scheme satisfies 0 < αiL < 1
and is diminishing but not square-summable, i.e. limk→∞ αk = 0 and

∑∞
k=1 α

2
k = ∞. Then for

almost all initial values w0 6= w∗,

lim
k→∞

∥∥E[wk,without-replacement]− w∗
∥∥∥∥E[wk,with-replacement]− w∗
∥∥ = 0.

Proof. Without loss of generality, suppose w∗ = 0. Also for simplicity let m = 1 (referring to the
one parallel worker in the algorithm, since M = 1). In this case, our loss functions are

fi(w) =
1

2
wTHiw.

With this, the updates of Algorithm 1 can be written as

uk,m,t = uk,m,t−1 − αk∇fσk,m(t) (uk,m,t−1)

= uk,m,t−1 − αkHσk,m(t)uk,m,t−1

=
(
I − αkHσk,m(t)

)
uk,m,t−1.

26

Now, by induction,

uk,m,n =

(
n∏
t=1

(
I − αkHσk,m(t)

))
wk,

and so

wk =
1

M

M∑
m=1

(
n∏
t=1

(
I − αkHσk,m(t)

))
wk−1.

Now taking the expected value, for random reshuffling
E
[
wk,without-replacement

]
= rrn(I − αkH1, . . . , I − αkHn) ·E

[
wk−1,without-replacement

]
and for with-replacement sampling

E
[
wk,with-replacement

]
= rr1(I − αkH1, . . . , I − αkHn)n ·E

[
wk−1,with-replacement

]
.

Let λ be the smallest eigenvalue of

rr1(H1, . . . ,Hn) =
1

n

n∑
i=1

Hi

with corresponding eigenvalue u. It follows that
rr1(I − αkH1, . . . , I − αkHn)u = (1− αkλ)u = ‖rr1(I − αkH1, . . . , I − αkHn)‖u.

And so, for with-replacement sampling,∣∣uTE [wk,with-replacement]∣∣ = ‖rr1(I − αkH1, . . . , I − αkHn)‖n ·
∣∣uTE [wk−1,with-replacement

]∣∣ .
Applying this recursively,∣∣uTE [wK,with-replacement]∣∣

=
∣∣uTE [w0,with-replacement

]∣∣ · K∏
k=1

‖rr1(I − αkH1, . . . , I − αkHn)‖n .

For almost all initial values,
∣∣uTE [w0,with-replacement

]∣∣ 6= 0. Call this nonzero quantity ρ. Then by
Cauchy-Schwarz,∥∥E [wK,with-replacement]∥∥ ≥ ρ · K∏

k=1

‖rr1(I − αkH1, . . . , I − αkHn)‖n .

On the other hand, for random reshuffling∥∥E [wk+1,without-replacement
]∥∥ ≤ ‖rrn(I − αkH1, . . . , I − αkHn)‖·

∥∥E [wk,without-replacement]∥∥ .
By Theorem 1, there exists some αmax > 0 and some C such that for all 0 < α < αmax,

‖rr1(I − αH1, . . . , I − αHn)‖ < ‖rr1(I − αH1, . . . , I − αHn)‖n − α2C.

Since limk→∞ αk = 0, there exists some κ such that for all k ≥ κ, αk < αmax. So, we can bound
our random-reshuffled distance recursively, for any K > κ as∥∥E [wK,without-replacement]∥∥

≤
∥∥E [w0,without-replacement

]∥∥ · K∏
k=1

‖rrn(I − αkH1, . . . , I − αkHn)‖

=
∥∥E [w0,without-replacement

]∥∥ · κ−1∏
k=1

‖rrn(I − αkH1, . . . , I − αkHn)‖

·
K∏
k=κ

‖rrn(I − αkH1, . . . , I − αkHn)‖

≤
∥∥E [w0,without-replacement

]∥∥ · κ−1∏
k=1

‖rrn(I − αkH1, . . . , I − αkHn)‖

·
K∏
k=κ

(
‖rr1(I − αkH1, . . . , I − αkHn)‖n − α2

kC
)

27

If we let
∥∥E [w0,without-replacement

]∥∥ = φ and divide this by the with-replacement term, we get∥∥E [wK,without-replacement]∥∥∥∥E [wK,with-replacement]∥∥
≤ φ

ρ
·
κ−1∏
k=1

‖rrn(I − αkH1, . . . , I − αkHn)‖
‖rr1(I − αkH1, . . . , I − αkHn)‖n

·
K∏
k=κ

(
1− α2

kC

‖rr1(I − αkH1, . . . , I − αkHn)‖n
)

Since each Hi is positive semidefinite, and each αk is sufficiently small, it follows that

‖rr1(I − αkH1, . . . , I − αkHn)‖ ≤ 1.

So, ∥∥E [wK,without-replacement]∥∥∥∥E [wK,with-replacement]∥∥
≤ φ

ρ
·
κ−1∏
k=1

‖rrn(I − αkH1, . . . , I − αkHn)‖
‖rr1(I − αkH1, . . . , I − αkHn)‖n

·
K∏
k=κ

(
1− α2

kC
)

≤ φ

ρ
·
κ−1∏
k=1

‖rrn(I − αkH1, . . . , I − αkHn)‖
‖rr1(I − αkH1, . . . , I − αkHn)‖n

· exp

(
−

K∑
k=κ

α2
kC

)
.

Since by assumption this sum diverges as K →∞, it follows that this entire expression converges to
0. This is what we wanted to show.

H Code to Reproduce Figures

Here, for completeness, and because the code is relatively short, we provide Julia code to reproduce
the figures in this paper.

H.1 Code to Reproduce Figure 1

1 using Random
2 using Statistics
3 using LinearAlgebra
4 using PyPlot
5

6 # Code to implement parallel SGD
7

8 abstract type SampleStrategy end;
9 abstract type WithReplacement <: SampleStrategy end;

10 abstract type WithoutReplacement <: SampleStrategy end;
11

12 function grad_fi(w::Array{Float64,1}, u::Array{Float64,1}, v::Array{Float64,1},
a::Float64, gamma::Float64)↪→

13 return 2 * (dot(u,w)*dot(v,w) - a) * (dot(u,w)*v + dot(v,w)*u) + gamma * w;
14 end
15

16 function par_sgd_epoch(w0::Array{Float64,1}, us::Array{Array{Float64,1},1},
vs::Array{Array{Float64,1},1}, as::Array{Float64,1}, alpha::Float64,
gamma::Float64, ::Type{WithReplacement})

↪→
↪→

17 w = w0;
18 n = length(as);

28

19 for t = 1:n
20 i = rand(1:n);
21 w = w - alpha * grad_fi(w, us[i], vs[i], as[i], gamma);
22 end
23 return w;
24 end
25

26 function par_sgd_epoch(w0::Array{Float64,1}, us::Array{Array{Float64,1},1},
vs::Array{Array{Float64,1},1}, as::Array{Float64,1}, alpha::Float64,
gamma::Float64, ::Type{WithoutReplacement})

↪→
↪→

27 w = w0;
28 n = length(as);
29 s = randperm(n)
30 for t = 1:n
31 i = s[t];
32 w = w - alpha * grad_fi(w, us[i], vs[i], as[i], gamma);
33 end
34 return w;
35 end
36

37 function par_sgd(w0::Array{Float64,1}, us::Array{Array{Float64,1},1},
vs::Array{Array{Float64,1},1}, as::Array{Float64,1}, alpha::Float64,
gamma::Float64, M::Int64, K::Int64, ::Type{RS}) where {RS<:SampleStrategy}

↪→
↪→

38 w = w0;
39 ws = [copy(w0)];
40 for k = 1:K
41 w = mean([par_sgd_epoch(w, us, vs, as, alpha, gamma, RS) for m = 1:M]);
42 # println("at iter k, norm(w) =(norm(w))");
43 push!(ws, w);
44 end
45 return ws;
46 end
47

48 function mc_loss(w::Array{Float64,1}, us::Array{Array{Float64,1},1},
vs::Array{Array{Float64,1},1}, as::Array{Float64,1}, gamma::Float64)↪→

49 n = length(as);
50 return mean((dot(w,us[i])*dot(w,vs[i]) - as[i])^2 for i = 1:n) + gamma *

norm(w)^2 / 2;↪→
51 end
52

53

54 # Parameters
55

56 n = 40;
57 alpha = 0.1;
58 gamma = 0.05;
59 y_ii = sqrt(n-1)/n;
60 y_ij = -1.0/(n*sqrt(n-1));
61

62 us = [ones(n) for i = 1:n];
63 vs = [[(i == j) ? y_ii : y_ij for j = 1:n] for i = 1:n];
64 as = [(1 - alpha * gamma)/(2 * alpha) for i = 1:n];
65

66 M = 1000;
67 K = 100;
68

69 # Run experiments and produce figure
70

71 Random.seed!(1234567);
72

73 w0 = randn(n); w0 = w0 / norm(w0);
74

75 optimal_loss = mc_loss(zeros(n),us,vs,as,gamma);
76

77 figure(figsize=(4.0, 2.75));

29

78

79 for RUN = 1:10
80 w0 = 0.1 * randn(n);
81 ws_with = par_sgd(w0, us, vs, as, alpha, gamma, M, K, WithReplacement);
82 ws_without = par_sgd(w0, us, vs, as, alpha, gamma, M, K, WithoutReplacement);
83 losses_with = [mc_loss(w,us,vs,as,gamma) for w in ws_with];
84 losses_without = [mc_loss(w,us,vs,as,gamma) for w in ws_without];
85 if RUN == 10
86 semilogy(losses_with .- optimal_loss; c="#1f77a4", label="with

replacement");↪→
87 semilogy(losses_without .- optimal_loss; c="#c62028", label="without

replacement");↪→
88 else
89 semilogy(losses_with .- optimal_loss; c="#1f77a4", linestyle=":");
90 semilogy(losses_without .- optimal_loss; c="#c62028", linestyle=":");
91 end
92 end
93

94 legend();
95 ylabel("loss gap");
96 xlabel("epoch number");
97

98 tight_layout();
99

100 savefig("parsgdexample.pdf");

H.2 Code to Reproduce Figure 2

1 using Random
2 using Statistics
3 using LinearAlgebra
4 using PyPlot
5

6

7 abstract type SampleStrategy end;
8 abstract type WithReplacement <: SampleStrategy end;
9 abstract type WithoutReplacement <: SampleStrategy end;

10

11 function grad_fi(w::Array{Float64,1}, H::Array{Float64})
12 return H*w;
13 end
14

15 function par_sgd_epoch(w0::Array{Float64,1}, Hs::Array{Array{Float64,2},1},
alpha::Float64, ::Type{WithReplacement})↪→

16 w = w0;
17 n = length(Hs);
18 for t = 1:n
19 i = rand(1:n);
20 w = w - alpha * grad_fi(w, Hs[i]);
21 end
22 return w;
23 end
24

25 function par_sgd_epoch(w0::Array{Float64,1}, Hs::Array{Array{Float64,2},1},
alpha::Float64, ::Type{WithoutReplacement})↪→

26 w = w0;
27 n = length(Hs);
28 s = randperm(n)
29 for t = 1:n
30 i = s[t];
31 w = w - alpha * grad_fi(w, Hs[i]);
32 end

30

33 return w;
34 end
35

36 function par_sgd(w0::Array{Float64,1}, Hs::Array{Array{Float64,2},1},
alpha::Float64, M::Int64, K::Int64, ::Type{RS}) where {RS<:SampleStrategy}↪→

37 w = w0;
38 ws = [copy(w0)];
39 for k = 1:K
40 w = mean([par_sgd_epoch(w, Hs, alpha, RS) for m = 1:M]);
41 # println("at iter k, norm(w) =(norm(w))");
42 push!(ws, w);
43 end
44 return ws;
45 end
46

47 function blockdiag(Xs::Array{T}...) where {T<:Number}
48 m = sum(size(X,1) for X in Xs);
49 n = sum(size(X,2) for X in Xs);
50 rv = zeros(T,m,n);
51 i = 0;
52 j = 0;
53 for X in Xs
54 rv[i.+(1:size(X,1)),j.+(1:size(X,2))] .= X;
55 i += size(X,1);
56 j += size(X,2);
57 end
58 return rv;
59 end
60

61 # construct the example
62

63 n = 8
64

65 A_kij = -2/(n*sqrt(n-1));
66 A_kii = 1 - 2/(n*sqrt(n-1));
67 A_kki = (n-2)/(n*sqrt(n-1));
68 A_kkk = 1 + (2*sqrt(n-1))/n;
69

70 As = [[(i == j) ? ((i == k) ? A_kkk : A_kii) : (((i==k)(j==k)) ? A_kki : A_kij) for
i = 1:n, j = 1:n] for k = 1:n];↪→

71

72 beta = 0.5;
73

74 Hs = [blockdiag(I - beta * A, [1 - beta], [1 + beta]) for A in As];
75

76

77 # problem settings
78 M = 100;
79 K = 20;
80 alphas = 0.0:0.001:1.7;
81

82 # initial value
83 Random.seed!(8675309)
84 w0 = vcat(randn(n), 1e-20*randn(2)); # note smaller magnitude in extra component
85

86 # run experiments
87 y_with = [norm(par_sgd(w0, Hs, alpha, M, K, WithReplacement)[end]) for alpha in

alphas];↪→
88 y_without = [norm(par_sgd(w0, Hs, alpha, M, K, WithoutReplacement)[end]) for alpha

in alphas];↪→
89

90 y_with1 = [norm(par_sgd(w0, Hs, alpha, 1, K, WithReplacement)[end]) for alpha in
alphas];↪→

91 y_without1 = [norm(par_sgd(w0, Hs, alpha, 1, K, WithoutReplacement)[end]) for alpha
in alphas];↪→

31

92

93

94 figure(figsize=(4.0, 2.75));
95

96 semilogy(alphas, y_with1; label="with replacement (M=1)", c="#7fc7e4",
linestyle=":");↪→

97 semilogy(alphas, y_without1; label="without replacement (M=1)", c="#e6a798",
linestyle=":");↪→

98 semilogy(alphas, y_with; label="with replacement (M=100)", c="#1f77a4");
99 semilogy(alphas, y_without; label="without replacement (M=100)", c="#c62028");

100 xlim((0.0,1.7));
101 xlabel("step size");
102 ylabel("distance to optimum");
103 legend(frameon=false, fontsize="small");
104

105 tight_layout();
106

107 savefig("convexsgdexample.pdf");

H.3 Code to Reproduce Figure 3

1 using LinearAlgebra
2 using Random
3 using PyPlot
4

5 A1 = BigInt.([2 -1 1; -1 2 -1; 1 -1 1]).//4
6 A2 = BigInt.([2 0 -1; 0 1 1; -1 1 2]).//4
7 A3 = BigInt.([0 0 0; 0 1 -1; 0 -1 2]).//4
8 u = BigInt.([1, -2, -1]).//1;
9 R = (u*u')//6;

10

11 # assert that the product of the matrices is in fact nilpotent
12 @assert((A1*A2*A3)^3 == zeros(Rational{BigInt},3,3))
13

14 # check that all the matrices are in fact positive semidefinite
15 @assert(all(eigvals(Float64.(A1)) .>= 0))
16 @assert(all(eigvals(Float64.(A2)) .>= 0))
17 @assert(all(eigvals(Float64.(A3)) .>= 0))
18 @assert(all(eigvals(Float64.(R)) .>= -1e-8))
19

20 # check that all the matrices are in fact all \preceq I
21 @assert(all(eigvals(Float64.(A1)) .<= 1))
22 @assert(all(eigvals(Float64.(A2)) .<= 1))
23 @assert(all(eigvals(Float64.(A3)) .<= 1))
24 @assert(all(eigvals(Float64.(R)) .<= 1))
25

26 # all sequences of matrices that can occur in a single permutation of A1, A2, and
A3↪→

27 Ls = [BigInt.(Matrix(I,3,3)).//1,
28 A1,A2,A3,
29 A1*A2,A1*A3,A2*A1,A2*A3,A3*A1,A3*A2,
30 A1*A2*A3,A1*A3*A2,A2*A1*A3,A2*A3*A1,A3*A1*A2,A3*A2*A1];
31

32 # assert that no possible sequence can be 0
33 for L1 in Ls
34 for L2 in Ls
35 @assert(u'*L1*L2*u != 0)
36 end
37 end
38

39 # function for SGD using without-replacement sampling

32

40 function sgd_rr(x0::Array{Rational{BigInt},1},
DS::Array{Array{Rational{BigInt},2},1}, alpha::Rational{BigInt},
num_epochs::Int64)

↪→
↪→

41 rv = Float64[];
42 x = x0;
43 for iepoch = 1:num_epochs
44 for s in shuffle(DS)
45 x = x - alpha * 2 * s * x;
46 end
47 loss = sum(x'*s*x for s in DS)//length(DS);
48 push!(rv, Float64(log10(BigFloat(loss))));
49 end
50 return rv;
51 end
52

53 # function for SGD using with-replacement sampling
54 function sgd_wr(x0::Array{Rational{BigInt},1},

DS::Array{Array{Rational{BigInt},2},1}, alpha::Rational{BigInt},
num_epochs::Int64)

↪→
↪→

55 rv = Float64[];
56 x = x0;
57 for iepoch = 1:num_epochs
58 for i = 1:length(DS)
59 x = x - alpha * 2 * rand(DS) * x;
60 end
61 loss = sum(x'*s*x for s in DS)//length(DS);
62 push!(rv, Float64(log10(BigFloat(loss))));
63 end
64 return rv;
65 end
66

67 # random initial value
68 Random.seed!(8765309)
69 x0 = big.(Rational.(randn(Float32,3)))
70

71 # dataset
72 DS = [I - A1, I - A2, I - A3, I - R]
73

74 # step size
75 alpha = BigInt(1)//2
76

77 # number of epochs and trials to run
78 nepochs = 1000
79 ntrials = 20
80

81 # run experiments
82 log10_losses_wr = [sgd_wr(x0, DS, alpha, nepochs) for i = 1:ntrials]
83 log10_losses_rr = [sgd_rr(x0, DS, alpha, nepochs) for i = 1:ntrials]
84

85 # modify wo replacement experiments to show very small number instead of minus
infinity↪→

86 # this is an adjustment for display, since that small number will be out of the
range of the axis↪→

87 # we will get nice vertical lines in the plot slowing the with-replacement curve has
jumped to 0↪→

88 log10_losses_wr_adjusted = [[(x == -Inf) ? -1e8 : x for x in ld] for ld in
log10_losses_wr]↪→

89

90 # actually make the plot
91 figure(figsize=(4.0, 2.75));
92 plot(log10_losses_wr_adjusted[1]; label="with replacement", color="#1f77a4")
93 plot(log10_losses_rr[1]; label="without replacement", color="#c62028")
94 for dd in log10_losses_wr_adjusted[2:end]
95 plot(dd; color="#1f77a4", linestyle=":")
96 end

33

97 for dd in log10_losses_rr[2:end]
98 plot(dd; color="#c62028", linestyle=":")
99 end

100 legend()
101 ylim([-4000,100])
102 xlabel("epoch number")
103 ylabel("\$\\log_{10}\$(loss)")
104 tight_layout()
105

106 savefig("asymptotic.pdf")

34

	Introduction
	Notation
	Related Work

	Constructing a Counterexample
	A Counterexample for the First Inequality
	A Counterexample for the Second Inequality
	A Counterexample for the Third Inequality

	A Machine Learning Example
	Taking Step Size into Account
	Random Reshuffling Can be Worse Asymptotically Even for SGD
	Conclusion
	Additional Results
	Violating the Conjecture by a Larger Margin

	Another Example: Markov chain Monte Carlo
	Derivation of Section 2.1
	Derivation for Section 2.2
	Code to Verify the Counterexample to Conjecture 2
	Proof of Theorem 1
	Proofs of Lemmas
	Main Body of Proof of Theorem 1

	Proof of Corollary 1
	Code to Reproduce Figures
	Code to Reproduce Figure 1
	Code to Reproduce Figure 2
	Code to Reproduce Figure 3

