Kullback-Leibler Proximal Variational Inference

Part of Advances in Neural Information Processing Systems 28 (NIPS 2015)

Bibtex Metadata Paper Reviews Supplemental

Authors

Mohammad Emtiyaz Khan, Pierre Baque, François Fleuret, Pascal Fua

Abstract

We propose a new variational inference method based on the Kullback-Leibler (KL) proximal term. We make two contributions towards improving efficiency of variational inference. Firstly, we derive a KL proximal-point algorithm and show its equivalence to gradient descent with natural gradient in stochastic variational inference. Secondly, we use the proximal framework to derive efficient variational algorithms for non-conjugate models. We propose a splitting procedure to separate non-conjugate terms from conjugate ones. We then linearize the non-conjugate terms and show that the resulting subproblem admits a closed-form solution. Overall, our approach converts a non-conjugate model to subproblems that involve inference in well-known conjugate models. We apply our method to many models and derive generalizations for non-conjugate exponential family. Applications to real-world datasets show that our proposed algorithms are easy to implement, fast to converge, perform well, and reduce computations.