
Supplementary Material for “Kullback-Leibler
Proximal Variational Inference”

1 Proof of Theorem 1

The KL proximal point algorithm solves the following subproblems:

λk+1 = argmax
λ
L(λ)− 1

βk
DKL[q(z|λ) ‖ q(z|λk)] (1)

To prove the theorem, we will first derive the expression for the gradient descent updates using
the natural gradient. Afterwards, we will derive the solution of (1) by differentiating the objective
function. Afterwards, we do a few simplifications to obtain the theorem.

Derivative of L: Denote the mean-field update for qi by λ∗i . Then the gradient 5λiL(λ) and the
natural gradient 5̂λi

L(λ) are given as shown below (see Appendix A.1 and A.2 of [1] for a detailed
derivation):

5λiL(λ) =
[
52
λi
Ai(λi)

]
(λ∗i − λi) , 5̂λi

L(λ) = λ∗i − λi. (2)

Denoting the vector λi (or λ∗i ) at k’th iteration by λi,k (or λ∗i,k), a gradient update along the natural
gradient with step-size ρ will result in the following update:

λi,k+1 ← λi,k + ρ5̂λi
L(λ) = (1− ρ)λi,k + ρλ∗i,k (3)

Solution of KL proximal-point algorithm: We will now derive the solution of the proximal-point
subproblem of (1). The gradient of the KL-divergence term can be derived using the definition of
the KL-divergence for exponential family [2].

DKL[qi(zi|λi) ‖ qi(zi|λi,k)] := Ai(λi,k)−Ai(λi)−5λi
Ai(λi)(λi,k − λi) (4)

⇒ 5λiDKL[qi(zi|λi) ‖ qi(zi|λi,k)] = −52
λi
Ai(λi)(λi,k − λi) (5)

The minimum of (1) can be obtained by setting the gradient to zero.

5λi
L(λ)− 1

βk
5λi

DKL[qi(zi|λi) ‖ qi(zi|λi,k)] = 0 (6)

⇒
[
52
λi
Ai(λi)

]
(λ∗i − λi) +

1

βk
52
λi
Ai(λi)(λi,k − λi) = 0 (7)

⇒
[
52
λi
Ai(λi)

] [
λ∗i − λi +

1

βk
(λi,k − λi)

]
= 0 (8)

⇒ λi,k+1 =
1

1 + βk
λi,k +

βk
1 + βk

λ∗i,k (9)

Therefore, we see that ρ = βk/(1 + βk).

2 Derivation for Generalized Linear Model

We will show that we obtain the following closed-form solutions,

V−1k+1 = rkV
−1
k + (1− rk)

[
Σ−1 + XT diag(γk)X

]
, (10)

mk+1 =
[
(1− rk)Σ−1 + rkV

−1
k

]−1 [
(1− rk)(Σ−1µ−XTαk) + rkV

−1
k mk

]
, (11)
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for the following proximal-gradient subproblem:

(mk+1,Vk+1) = arg max
m,V �0

−
N∑
n=1

[
αnk (x

T
nm) + 1

2γnk (x
T
nVxn)

]
+ Eq(z|λ)

[
N (z|µ,Σ)

N (z|m,V)

]
− 1

βk
DKL [N (z|m,V)||N (z|mk,Vk)] . (12)

2.1 Update for Vk+1

The KL divergence for Gaussian distribution is given as follows:

DKL [N (z|m1,V1)||N (z|m2,V2)] =

− 1
2

[
log |V1V

−1
2 | − Tr(V1V

−1
2 )− (m1 −m2)

TV−12 (m1 −m2) +D
]

(13)

Using this and the fact that the second term in (12) is the negative of the KL divergence, we expand
(12) to get the following,

1
2 [log |V| − Tr(VΣ−1)− (m− µ)TΣ−1(m− µ) +D]

+
1

2βk
[log |V| − Tr{V(Vk)

−1} − (m−mk)
TV−1k (m−mk) +D]

−
N∑
n=1

[
αnk(x

T
nm) + 1

2γnk(x
T
nVxn)

]
(14)

= 1
2

[(
1 +

1

βk

)
log |V| − Tr

{
V

(
Σ−1 +

1

βk
V−1k

)}
− (m− µ)TΣ−1(m− µ)

− 1

βk
(m−mk)

TV−1k (m−mk) +

(
1 +

1

βk

)
D

]
−

N∑
n=1

[
αnk(x

T
nm) + 1

2γnk(x
T
nVxn)

]
(15)

Taking the derivative with respect to V at V = Vk+1 and setting it to zero, we get the following:

⇒
(
1 +

1

βk

)
V−1k+1 −

(
Σ−1 +

1

βk
V−1k

)
−XT diag(γk)X = 0 (16)

⇒ V−1k+1 =
1

1 + βk
V−1k +

βk
1 + βk

[
Σ−1 + XT diag(γk)X

]
(17)

⇒ V−1k+1 = rkV
−1
k + (1− rk)

[
Σ−1 + XT diag(γk)X

]
(18)

where rk := 1/(1 + βk).

2.2 Update for mk+1

Taking derivative with respect to m at m = mk+1 and setting it to zero, we get the following:

⇒ −Σ−1(mk+1 − µ)− 1

βk
V−1k (mk+1 −mk)−XTαk = 0 (19)

⇒ −
[
Σ−1 +

1

βk
V−1k

]
mk+1 +

[
Σ−1µ+

1

βk
V−1k mk

]
−XTαk = 0 (20)

⇒ mk+1 =

[
Σ−1 +

1

βk
V−1k

]−1 [
Σ−1µ+

1

βk
V−1k mk −XTαk

]
(21)

⇒ mk+1 =

[
Σ−1 +

1

βk
V−1k

]−1 [
Σ−1µ+

1

βk
V−1k mk −XTαk

]
(22)

⇒ mk+1 =
[
(1− rk)Σ−1 + rkV

−1
k

]−1 [
(1− rk)

(
Σ−1µ−XTαk

)
+ rkV

−1
k mk

]
(23)

where the last step is obtained using the fact that 1/βk = rk/(1− rk).
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3 Derivation of the Computationally Efficient Updates

3.1 The first key step: reparameterization of Vk+1

We show that Vk+1 can be expressed in terms of γk. Specifically, if we assume that V0 = Σ, then

Vk+1 =
[
Σ−1 + XT diag(γ̃k+1)X

]−1
, where γ̃k+1 = rkγ̃k + (1− rk)γk. (24)

with γ̃0 = γ0.

We recursively substitute Vj for j < k + 1 and simplify to get a convenient update.

V−1k+1 = rkV
−1
k + (1− rk)

[
Σ−1 + XT diag(γk)X

]
(25)

= rk

[
rk−1V

−1
k−1 + (1− rk−1)

(
Σ−1 + XT diag(γk−1)X

)]
+ (1− rk)

(
Σ−1 + XT diag(γk)X

)
(26)

= rkrk−1V
−1
k−1 + rk(1− rk−1)

(
Σ−1 + XT diag(γk−1)X

)
+ (1− rk)

(
Σ−1 + XT diag(γk)X

)
(27)

= rkrk−1V
−1
k−1 + (1− rkrk−1)Σ−1 + XT

[
rk(1− rk−1)diag(γk−1) + (1− rk)diag(γk)

]
X

(28)

= rkrk−1

[
rk−2V

−1
k−2 + (1− rk−2)

(
Σ−1 + XT diag(γk−2)X

)]
+ (1− rkrk−1)Σ−1 + XT

[
rk(1− rk−1)diag(γk−1) + (1− rk)diag(γk)

]
X (29)

= rkrk−1rk−2V
−1
k−2 + (rkrk−1 − rkrk−1rk−2)Σ−1 + (1− rkrk−1)Σ−1

+ XT
[
rkrk−1(1− rk−2)diag(γk−2) + rk(1− rk−1)diag(γk−1) + (1− rk)diag(γk)

]
X (30)

= rkrk−1rk−2V
−1
k−2 + (1− rkrk−1rk−2)Σ−1

+ XT
[
rkrk−1(1− rk−2)diag(γk−2) + rk(1− rk−1)diag(γk−1) + (1− rk)diag(γk)

]
X (31)

Continuing in this fashion until k = 0, we can write the update as follows:

V−1k+1 = tkV
−1
0 + (1− tk)Σ−1 + XT diag(γk)X (32)

where tk is the product of rk, rk−1, . . . , r0 and γ̃k is computed according to the following recursion:

γ̃k = rkγ̃k−1 + (1− rk)γk (33)

with γ̃−1 = γ0. If we set V0 = Σ, then the formula simplifies to the following:

V−1k+1 = Σ−1 + XT diag(γ̃k)X (34)

3.2 The second key step: expressing the updates in terms of m̃ and ṽ

We recall the definition described in the paper. Define m̃ to be a vector with m̃n as its n’th entry.
Similarly, let ṽ be the vector of ṽn for all n. Denote the corresponding vectors in the k’th iteration
by m̃k and ṽk, respectively. Let αk be the vector of αnk for all n and similarly let γk be the vector
of γnk for all n. Finally, define µ̃ = Xµ and Σ̃ = XΣXT .

We will derive the following computationally efficient updates:

m̃k+1 = m̃k + (1− rk)(I− Σ̃B−1k )(µ̃− m̃k − Σ̃αk), where Bk := Σ̃ + [diag(rkγ̃k)]
−1,

ṽk+1 = diag(Σ̃)− diag(Σ̃A−1k Σ̃), where Ak := Σ̃ + [diag(γ̃k)]
−1. (35)
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We use the fact that ṽ = diag(XVXT ) and apply Woodbury matrix identity.

ṽk+1 = diag(XVk+1X
T ) = diag

[
X(Σ−1 + XT diag(γ̃k)X)−1XT

]
(36)

= diag
[
X

{
Σ−ΣXT

(
diag(γ̃k)

−1
+ XΣXT

)−1
XΣ

}
XT

]
(37)

= diag
[
Σ̃− Σ̃

(
diag(γ̃k)

−1
+ Σ̃

)−1
Σ̃

]
(38)

= diag(Σ̃)− diag(Σ̃A−1k Σ̃), where Ak := Σ̃ + [diag(γ̃k)]
−1. (39)

Now we derive updates for m̃k+1. First, we simply the updates of mk+1 as shown below. The first
step is obtained by adding and subtracting (1− rk)Σ−1mk in the square bracket at the right. In the
second step, we take out mk. The final step is obtained by plugging in the updates of Vk.

mk+1 =
[
(1− rk)Σ−1 + rkV

−1
k

]−1 [
(1− rk)(Σ−1µ−XTαk) + rkV

−1
k mk

]
(40)

=
[
(1− rk)Σ−1 + rkV

−1
k

]−1 [
(1− rk){Σ−1(µ−mk)−XTαk}+ {(1− rk)Σ−1 + rkV

−1
k }mk

]
(41)

= mk + (1− rk)
[
(1− rk)Σ−1 + rkV

−1
k

]−1 [
Σ−1(µ−mk)−XTαk

]
(42)

= mk + (1− rk)
[
Σ−1 + rkX

T diag(γ̃k−1)X
]−1 [

Σ−1(µ−mk)−XTαk

]
(43)

Now we multiply the whole equation by X and use the fact that m̃ = Xm.

m̃k+1 = m̃k + (1− rk)X
[
Σ−1 + rkX

T diag(γ̃k−1)X
]−1 [

Σ−1(µ−mk)−XTαk

]
(44)

= m̃k + (1− rk)X
{

Σ−ΣXT
(

diag(rkγ̃k)
−1

+ XΣXT
)−1

XΣ

}[
Σ−1(µ−mk)−XTαk

]
(45)

= m̃k + (1− rk)
{

XΣ−XΣXT
(

diag(rkγ̃k)
−1

+ XΣXT
)−1

XΣ

}
Σ−1

[
µ−mk −ΣXTαk

]
(46)

= m̃k + (1− rk)
{

X− Σ̃
(

diag(rkγ̃k)
−1

+ Σ̃
)−1

X

}[
µ−mk −ΣXTαk

]
(47)

= m̃k + (1− rk)
{

I− Σ̃
(

diag(rkγ̃k)
−1

+ Σ̃
)−1}[

µ̃− m̃k − Σ̃αk

]
(48)

= m̃k + (1− rk)(I− Σ̃B−1k )(µ̃− m̃k − Σ̃αk) (49)

where Bk := Σ̃ + [diag(rkγ̃k)]
−1.

4 Convergence Assessment

We will use the first-order condition which says that the gradient of L should be zero at the maxi-
mum. The lower bound is given as follows:

L(m,V) =

N∑
n=1

fn(m̃n, ṽn) + Eq(z|λ)
[
N (z|µ,Σ)

N (z|m,V)

]
(50)

=

N∑
n=1

fn(m̃n, ṽn) +
1
2 [log |V| − Tr(VΣ−1)− (m− µ)TΣ−1(m− µ) +D] (51)

Taking the derivative w.r.t. V at m = mk+1,V = Vk+1, we get the following:
5VL(m,V) = − 1

2XT diag(γk+1)X + 1
2V−1k+1 −

1
2Σ−1 (52)

= − 1
2XT diag(γk+1)X + 1

2

[
Σ−1 + XT diag(γ̃k)X

]
− 1

2Σ−1 (53)

= 1
2XT

[
diag(γ̃k)− diag(γk+1)

]
X− 1

2Σ−1. (54)
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Taking the derivative w.r.t. m at m = mk+1,V = Vk+1, we get:

5mL(m,V) = −XTαk+1 −Σ−1(mk+1 − µ). (55)

We can therefore monitor the two gradients to assess convergence:

‖Σ−1(µ−mk+1)−XTαk+1‖22 + 1
2Tr[XT diag(γ̃k − γk+1)X−Σ−1] ≤ ε, (56)

To get computational efficient version, we can monitor the following:

‖XΣ5m L(m,V)‖22 + Tr
[
XΣ5V L(m,V)ΣXT

]
= | Σ̃αk+1 − m̃k+1 + µ̃‖22 + Tr

[
Σ̃
{

diag(γ̃k − γk+1 − 1)
}

Σ̃
]

(57)
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