Sample complexity and effective dimension for regression on manifolds

Part of Advances in Neural Information Processing Systems 33 (NeurIPS 2020)

AuthorFeedback »Bibtex »MetaReview »Paper »Review »Supplemental »


Andrew McRae, Justin Romberg, Mark Davenport


<p>We consider the theory of regression on a manifold using reproducing kernel Hilbert space methods. Manifold models arise in a wide variety of modern machine learning problems, and our goal is to help understand the effectiveness of various implicit and explicit dimensionality-reduction methods that exploit manifold structure. Our first key contribution is to establish a novel nonasymptotic version of the Weyl law from differential geometry. From this we are able to show that certain spaces of smooth functions on a manifold are effectively finite-dimensional, with a complexity that scales according to the manifold dimension rather than any ambient data dimension. Finally, we show that given (potentially noisy) function values taken uniformly at random over a manifold, a kernel regression estimator (derived from the spectral decomposition of the manifold) yields minimax-optimal error bounds that are controlled by the effective dimension.</p>