
A Proof of general RKHS results (Theorem 1)

We write PG and PG⊥ for the projections in L2 and H onto G and its orthogonal complement G⊥,
respectively.

For brevity, we denote by Pn the empirical measure given by the n independent samples of the
variables (X, ξ), i.e., Pnw = 1

n

∑n
i=1 w(Xi, ξi). For example, if h : S → R is a function, Pnh2 =

1
n

∑n
i=1 h

2(Xi), and Pnξh = 1
n

∑n
i=1 ξih(Xi).

We use the following lemmas in our proof of Theorem 1:
Lemma 3. Let δ ∈ (0, 1). If

n ≥ max{7, 3γ′}Kp log
max{2, 4γ}p

δ
,

then, with probability at least 1− δ,

Pnf
2 ≥ 1

2
‖f‖2L2

− 3
√
tp+1‖f‖L2

‖f‖H

for all f ∈ H.
Lemma 4. There is a universal constant C such that, if

n

log2 n
≥ C(1 ∨ γ′)

Kp

p

‖ξ‖2ψ1

σ2
,

then, with probability at least 1− δ,

|Pnξf | ≤
3

2
σ ·

(√
p+ 2

√
log 4/δ

√
n

‖f‖L2
+

√
trTG⊥ + 2

√
tp+1 log 4/δ√

n
‖f‖H

)

≤ 3

2
σ ·

(√
p+ 2

√
log 4/δ

√
n

)(
‖f‖L2

+
√

γtp+1‖f‖H
)
.

for all f ∈ H.

With these, we prove the main result:

Proof of Theorem 1. We write our objective function as

F (f) =
1

n

n∑
i=1

(Yi − f(Xi))
2 + α‖f‖2H.

f̂ satisfies ∇F (f̂) = 0. Noting that

1

2
∇F (f) = − 1

n

n∑
i=1

(Yi − f(Xi))k(·, Xi) + αf,

we have

0 =
1

2
〈∇F (f̂), f∗ − f̂〉H

=

〈
αf̂ − 1

n

n∑
i=1

(Yi − f̂(Xi))k(·, Xi), f
∗ − f̂

〉
H

= α〈f̂ , f∗ − f̂〉H − 1

n

n∑
i=1

(Yi − f̂(Xi))(f
∗(Xi)− f̂(Xi))

= α〈f̂ , f∗ − f̂〉H +
1

n

n∑
i=1

[
(Yi − f∗(Xi))(f̂(Xi)− f∗(Xi))− (f̂(Xi)− f∗(Xi))

2
]

= α〈f̂ , f∗ − f̂〉H + Pnξ(f̂ − f∗)− Pn(f̂ − f∗)2. (4)
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Let E1 and E2 denote the events of Lemmas 3 and 4. For part 1 of the theorem, we assume that E1

holds, which occurs with probability at least 1 − δ. For part 2, we assume E1 ∩ E2 holds, which
occurs with probability at least 1− 2δ. In what follows, we treat the two cases the same (and assume
α > 0), since we can simply take σ = 0 and the limit α ↓ 0 for part 1.

Let e2 = ‖f̂ − f∗‖L2
and eH = ‖f̂ − f∗‖H. On E1 ∩ E2, (4) implies

1

2
e22 ≤ σ(ae2 + beH) + ce2eH + α〈f̂ , f∗ − f̂〉H,

where a = 3
2

√
p+2

√
log 4/δ√
n

, b =
√
γtp+1a, and c = 3

√
tp+1. First, note that

〈f̂ , f∗ − f̂〉H = 〈f∗, f∗ − f̂〉H − e2H ≤ ‖f∗‖HeH − e2H,

so

σbeH + α〈f̂ , f∗ − f̂〉H ≤ (σb+ α‖f∗‖H)eH − αe2H ≤ (σb+ α‖f∗‖H)2

α
.

To control the error term ce2eH, we need a more explicit bound on eH. Because Pn(f̂ − f∗)2 ≥ 0,
(4) gives

e2H ≤ ‖f∗‖HeH +
1

α
Pnξ(f̂ − f∗) ≤ ‖f∗‖HeH +

σ

α
(ae2 + beH).

Because x2 ≤ a+ bx implies x ≤
√
a+ b, we then have

eH ≤ ‖f∗‖H +
σb

α
+

√
σae2
α

.

Putting everything together, we have

1

2
e22 ≤ (σb+ α‖f∗‖H)2

α
+ σae2 + ce2

(
‖f∗‖H +

σb

α
+

√
σae2
α

)
.

x2 ≤ a+ bx+ cx3/2 implies x ≤
√
a+ b+ c2, so

e2 ≤
√
2
σb√
α
+
√
2α‖f∗‖H + 2σa+ 2c‖f∗‖H + 2

σcb

α
+ 4

c2σa

α

= (
√
2α+ 2c)‖f∗‖H + 2σ

(
a+

b√
2α

+
bc

α
+ 2

ac2

α

)
.

The result immediately follows by substituting our choices of a, b, and c and, if σ 6= 0, using the
assumption that α ≥ 54tp+1.

A.1 Proofs of key lemmas

Lemma 3 follows quickly from the following two concentration results:
Lemma 5. If δ ∈ (0, 1), and n ≥ 7Kp log

p
δ , then, with probability at least 1− δ, for all f ∈ G,

Pnf
2 ≥ 1

2
‖f‖2L2

.

Proof. Note that for all f ∈ G,

Pnf
2 =

1

n

n∑
i=1

f2(Xi)

=
1

n

n∑
i=1

〈Z(Xi), f〉2L2

= 〈(Pn(Z ⊗L2
Z))f, f〉L2

,
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where we define Z(X) =
∑p
`=1 v`(X)v` ∈ G. The lemma will follow from a concentration result

on Pn(Z ⊗L2 Z). Note that the operator Z(X)⊗L2 Z(X) � 0 for all X , and, by Assumption 2, we
have

‖Z(X)⊗L2 Z(X)‖L2 = ‖Z(X)‖2L2
=

p∑
`=1

v2` (X) ≤ Kp

almost surely. Also, EPn(Z ⊗L2 Z) = EZ(X)⊗L2 Z(X) = IG. The matrix Chernoff bound [1,
Theorem 5.1.1] implies that, for all ε ∈ [0, 1),

P(Pn(Z ⊗L2
Z) � (1− ε) IG) ≥ 1− p

(
e−ε

(1− ε)1−ε

)n/Kp

.

Choosing ε = 1/2 gives the result.

Lemma 6. If δ ∈ (0, 1), and n ≥ 3Rp

tp+1
log

2 trT
G⊥

tp+1δ
, then, with probability at least 1 − δ, for all

f ∈ G⊥,
Pnf

2 ≤ 2tp+1‖f‖2H.

Proof. Similarly to the proof of Lemma 5, for all f ∈ G⊥,

Pnf
2 = 〈(Pn(W ⊗H W ))f, f〉H,

where W (X) =
∑
`>p t`v`(X)v`. Note that EW (X)⊗H W (X) = TG⊥ . By Assumption 2,

‖W (X)⊗H W (X)‖H = ‖W (X)‖2H =
∑
`>p

t`v
2
` (X) ≤ Rp

almost surely. By [1, Theorem 7.2.1], if ε ≥ Rp/ntp+1, then

P(‖Pn(W ⊗H W )‖H ≤ (1 + ε)tp+1) ≥ 1− 2dp

(
eε

(1 + ε)1+ε

)ntp+1/Rp

,

where dp = trTG⊥/tp+1. Choosing ε = 1 gives the result.

Proof of Lemma 3. Applying Lemmas 5 and 6 (with δ/2 substituted for δ) and a union bound, we
have, with probability at least 1− δ,√

Pnf2 ≥
√
Pn(PG f)2 −

√
Pn(PG⊥ f)2

≥ 1√
2
‖PG f‖L2

−
√
2tp+1‖PG⊥ f‖H,

so

Pnf
2 ≥ 1

2
‖PG f‖2L2

− 2
√
tp+1‖PG f‖L2

‖PG⊥ f‖H

≥ 1

2
‖f‖2L2

− 1

2
‖PG⊥ f‖2L2

− 2
√
tp+1‖f‖L2

‖f‖H

≥ 1

2
‖f‖2L2

− 3
√
tp+1‖f‖L2

‖f‖H.

Proof of Lemma 4. Let BG
2 denote the L2-unit ball in G, and let BG⊥

H denote the H-unit ball in G⊥.
Note that for all f ∈ H, we have

f ∈ ‖f‖L2
BG

2 + ‖f‖HBG⊥

H ,

where the plus sign denotes Minkowski addition. Therefore, because |Pnξf | is sublinear in f , it
suffices to bound

Z1 := sup
f∈BG

2

|Pnξf |
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and
Z2 := sup

f∈BG⊥
H

|Pnξf |.

We present a complete proof for the bound of Z1; the proof for Z2 is similar.

First, note that

Z1 = sup
f∈BG

2

|Pnξf |

= sup∑p
`=1 a

2
`≤1

∣∣∣∣∣Pn
(
ξ

p∑
`=1

a`v`

)∣∣∣∣∣
= sup∑p

`=1 a
2
`≤1

∣∣∣∣∣
p∑
`=1

a`Pn(ξv`)

∣∣∣∣∣
=

(
p∑
`=1

P 2
n(ξv`)

)1/2

,

so

EZ1 ≤
√

EZ2
1 =

√√√√ p∑
`=1

EP 2
n(ξv`) = σ

√
p

n
.

We also have

sup
f∈BG

2

n∑
i=1

E(ξif(xi))
2 = nσ2.

Finally, note that
sup
f∈BG

2

‖f‖∞ ≤
√
Kp,

so ∥∥∥∥∥max
i

sup
f∈BG

2

|ξif(xi)|

∥∥∥∥∥
ψ1

≤
√

Kp‖ξ‖ψ1
log n.

Let η ∈ (0, 1). [2, Theorem 4] (with, in the notation of that paper, δ = 1) implies that, with
probability at least 1− δ/2,

Z1 ≤ σ

(
(1 + η)

√
p

n
+ 2

√
log 4/δ

n

)
+

C ′
η

√
Kp‖ξ‖ψ1

(log n)(log 12/δ)

n

for a constant C ′
η that only depends on η. By a similar argument, we have, with probability at least

1− δ/2,

Z2 ≤ σ

(
(1 + η)

√
trTG⊥

n
+ 2

√
tp+1 log 4/δ

n

)
+

C ′
η

√
Rp‖ξ‖ψ1

(log n)(log 12/δ)

n
.

Fixing η ∈ (0, 1/2) and choosing a suitable constant C to ensure n is large enough completes the
proof.

B Proof of heat kernel approximation (Lemma 1)

In this appendix, we prove upper and lower bounds on the heat kernel diagonal values. Although we
only use the upper bound in our paper, we include the lower bound also as both may be of independent
interest.

The concepts from differential geometry used in this section can be found in, for example, [3, 4]. The
key tools we will use in our analysis of how well the heat kernel is approximated by a Gaussian RBF
are the following comparison theorems:
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Lemma 7 ([5, Theorem 4.5.1]). If the sectional curvature of an m-dimensional manifold M is
bounded above by K > 0, then, for all x, y ∈ M, kht (x, y) ≤ kh,Kt (dM(x, y)), where kh,Kt (r) is
the (radially symmetric) heat kernel on the m-dimensional space of constant curvature K, and, if
K > 0, we set kh,Kt (r) = kh,Kt (π/

√
K) for r ≥ π/

√
K.

Lemma 8 ([5, Theorem 4.5.2]). If the Ricci curvature of M is bounded below by (m − 1)K for
some constant K, then, for all x, y ∈ M, kht (x, y) ≥ kh,Kt (dM(x, y)), where kh,Kt (r) is the heat
kernel on the space of constant curvature K.

A lower bound of K on sectional curvature implies a lower bound of (m−1)K on the Ricci curvature
tensor (see, e.g., the formula for Ric(v, v) in [4, p. 38]), so Lemma 8 also holds under the (stronger)
assumption of a lower bound of K on sectional curvature.

The space of constant curvature K > 0 is the sphere SmK = Sm/
√
K, while the space of constant

curvature −K < 0 is the scaled hyperbolic space Hm
K = Hm/

√
K. To apply Lemmas 7 and 8, we

need to find bounds for the heat kernel on the sphere and on hyperbolic space.

We will use the following result:

Lemma 9 ([6, Theorem 1]). The heat kernel in hyperbolic space Hm has the radial representation

kh,H
m

t (r) = e−
(m−1)2t

8

( r

sinh r

)m−1
2 e−r

2/2t

(2πt)m/2

×Er exp

(
− (m− 1)(m− 3)

8

∫ t

0

(
1

sinh2 Rs
− 1

R2
s

)
ds

)
,

where Rs is an m-dimensional Bessel process, and Er denotes expectation conditioned on Rt = r.

A nearly identical argument to that in [6] gives a corresponding result for the sphere Sm for m ≥ 2:

Lemma 10. For all m ≥ 2, the heat kernel on the sphere Sm has the radial representation

kh,S
m

t (r) = e
(m−1)2t

8

( r

sin r

)m−1
2 e−r

2/2t

(2πt)m/2

×Er exp

(
− (m− 1)(m− 3)

8

∫ t

0

(
1

sin2 Rs
− 1

R2
s

)
ds

)
,

where, again, Rs is an m-dimensional Bessel process, and Er denotes expectation conditioned on
Rt = r.

For m ≥ 3, the exponent in the integrands in the formula of Lemma 9 (resp. Lemma 10) is always
positive (resp. negative), so we have the following simple bounds on the heat kernels on the standard
spaces of constant curvature:

kh,H
m

t (r) ≥ e−
(m−1)2t

8

( r

sinh r

)m−1
2 e−r

2/2t

(2πt)m/2
, (5)

and

kh,S
m

t (r) ≤ e
(m−1)2t

8

( r

sin r

)m−1
2 e−r

2/2t

(2πt)m/2
. (6)

It is easily verified that pS
m
K
t (r) = pS

m

Kt (
√
Kr), with a similar formula for scaled hyperbolic space.

We can summarize this in the following result:

Lemma 11. Suppose M is an m-dimensional complete Riemannian manifold for m ≥ 3.

1. Suppose M has Ricci curvature bounded below by −(m− 1)K1. Then, for all x, y ∈ M,
denoting r = d(x, y),

kht (x, y) ≥ e−
(m−1)2

8 K1t

( √
K1r

sinh(
√
K1r)

)m−1
2 e−r

2/2t

(2πt)m/2
.
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2. Suppose M has sectional curvature bounded above by K2. Then, for r < π/
√
K2, and for

all x, y ∈ M such that d(x, y) ≥ r,

kht (x, y) ≤ e
(m−1)2

8 K2t

( √
K2r

sin(
√
K2r)

)m−1
2 e−r

2/2t

(2πt)m/2
.

We note that, for r = 0 and t small, these results are comparable to the well-known asymptotic
expansion for the heat kernel, which depends on the scalar curvature at x (see, e.g., [7, Section VI.4]).

Finally, we specialize to the case r = 0 and simplify:

Proposition 1. Let ε ≤ 2/3.

1. Under the conditions of Lemma 11.1, for t ≤ 8ε
(m−1)2K1

and all x ∈ M,

kht (x, x) ≥
1− ε

(2πt)m/2
.

2. Under the conditions of Lemma 11.2, for t ≤ 6ε
(m−1)2K2

and all x ∈ M,

kht (x, x) ≤
1 + ε

(2πt)m/2
.

Proof. From Lemma 11, we have

e−
(m−1)2

8 K1t ≤ (2πt)−m/2kht (x, x) ≤ e
(m−1)2

8 K2t.

The result follows from noting that e−s ≥ 1− s for all s ≥ 0, and es ≤ 1+ 4
3s for 0 ≤ s ≤ 1/2.

Lemma 1 is a case of this last result, taking K2 = κ.

C Proof of non-asymptotic Weyl law estimates (Theorem 2 and Lemma 2)

Proof of Theorem 2. By Lemma 1, for all λ ≥ 0 and t ≤ 6ε
(m−1)2κ ,

e−λt/2Nx(λ) = e−λt/2
∑
λ`≤λ

v2` (x)

≤
∞∑
`=0

e−λ`t/2v2` (x)

= kht (x, x)

≤ 1 + ε

(2πt)m/2
.

Taking t = m/λ, we get

Nx(λ) ≤
(1 + ε)eλt/2

(2πt)m/2

=
1 + ε

(4π)m/2
em/2

(m/2)m/2
λm/2

≤ 1 + ε

(4π)m/2
2
√
m

Γ
(
m
2 + 1

)λm/2
=

2(1 + ε)
√
m

(2π)m
Vmλm/2,

where the second inequality uses Stirling’s approximation.
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Proof of Lemma 2. For c ∈ (0, 1), note that∑
λ`≥λ

e−λ`t/2v2` (x) ≤ e−(1−c)λt/2
∑
λ`≥λ

e−cλ`t/2v2` (x)

≤ e−(1−c)λt/2
∞∑
k=0

e−cλ`t/2v2` (x)

= e−(1−c)λt/2pMct (x, x)

≤ e−λt/2(1 + ε)
ecλt/2

(2πct)m/2
.

Choosing c = m/λt, the remainder of the proof is identical to that of Theorem 2.

D Proof of manifold regression results (Theorems 3 and 4)

Proof of Theorems 3 and 4. To apply the framework of Sections 2.1 and 4.1, which assumes the set
S has measure 1, we consider the normalized volume measure dṼ = dV/ volM. With respect to Ṽ ,
kht has the eigenvalue decomposition

kht (x, y) =
1

volM
∑
`

e−λ`t/2ũ`(x)ũ`(y),

where ũ` =
√
volMu`. A similar normalized expansion holds for kblΩ .

Note that Theorem 2 and Lemma 2 only give us bounds on the contants Kp and Rp in Assumption 2.
For kblΩ , this holds with Kp = p(Ω) (taking ε = 1/2 in Theorem 2) and Rp = 0. Assumption 3 holds
trivially with γ = γ′ = 0.

For kht , we can again take Kp = p(Ω) (again taking ε = 1/2), and we get a bound on Rp such that
γ = γ′ = 1.

Finally, for both kernels, we take into account the fact that ‖·‖L2(M,Ṽ ) = ‖·‖L2(M,V )/
√
volM.

With these considerations in mind, the results follow from Theorem 1.
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