Meta-learning from Tasks with Heterogeneous Attribute Spaces

Part of Advances in Neural Information Processing Systems 33 (NeurIPS 2020)

AuthorFeedback Bibtex MetaReview Paper Review Supplemental


Tomoharu Iwata, Atsutoshi Kumagai


We propose a heterogeneous meta-learning method that trains a model on tasks with various attribute spaces, such that it can solve unseen tasks whose attribute spaces are different from the training tasks given a few labeled instances. Although many meta-learning methods have been proposed, they assume that all training and target tasks share the same attribute space, and they are inapplicable when attribute sizes are different across tasks. Our model infers latent representations of each attribute and each response from a few labeled instances using an inference network. Then, responses of unlabeled instances are predicted with the inferred representations using a prediction network. The attribute and response representations enable us to make predictions based on the task-specific properties of attributes and responses even when attribute and response sizes are different across tasks. In our experiments with synthetic datasets and 59 datasets in OpenML, we demonstrate that our proposed method can predict the responses given a few labeled instances in new tasks after being trained with tasks with heterogeneous attribute spaces.