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Abstract

We propose a heterogeneous meta-learning method that trains a model on tasks with
various attribute spaces, such that it can solve unseen tasks whose attribute spaces
are different from the training tasks given a few labeled instances. Although many
meta-learning methods have been proposed, they assume that all training and target
tasks share the same attribute space, and they are inapplicable when attribute sizes
are different across tasks. Our model infers latent representations of each attribute
and each response from a few labeled instances using an inference network. Then,
responses of unlabeled instances are predicted with the inferred representations
using a prediction network. The attribute and response representations enable
us to make predictions based on the task-specific properties of attributes and
responses even when attribute and response sizes are different across tasks. In our
experiments with synthetic datasets and 59 datasets in OpenML, we demonstrate
that our proposed method can predict the responses given a few labeled instances
in new tasks after being trained with tasks with heterogeneous attribute spaces.

1 Introduction

Humans can learn from their various experiences and use such knowledge for new tasks that are related
to but different from their experiences. In contrast, since machine learning methods are usually trained
on a specific task, they can only be used for that task. Therefore, we need to prepare a large amount of
training data when we tackle new tasks. However, preparing sufficient training data requires high cost
and is time-consuming in real-world applications. For such problems, much attention has been paid
to few-shot learning, which is a framework for obtaining models that can learn from fewer examples.
Although many few-shot learning methods have recently been proposed [31, 22, 18, 28, 7, 13, 9], the
existing methods assume that all training and target tasks share the same attribute space, and cannot
handle tasks with heterogeneous attribute spaces. Here, heterogeneous attribute spaces denote that
their attribute spaces are different from each other [38, 20, 37]. This limitation prevents us from
learning with a wide variety of tasks, which might contain useful knowledge to cope with new tasks.
Although tasks with heterogeneous attribute spaces have been considered in domain adaptation, or
transfer learning [20, 38, 32, 34, 17, 33, 37], these methods assume only two tasks, and require target
datasets for training.

In this paper, we propose a few-shot learning method for tasks with heterogeneous attribute spaces.
The proposed method trains a model on tasks with various attribute spaces, such that it can solve
unseen tasks whose attribute spaces are different from the training tasks given a few labeled instances.
Figure 1 shows our problem formulation. Our model predicts the response of an attribute vector,
which is called a query, given a few instances, which are called a support set, where the number of
attributes can be arbitrary, and the target task is different from the training tasks. Our model assumes
latent attribute vectors for the representation of each attribute, and latent response vectors for the
representation of each response. The latent attribute vectors and latent response vectors are inferred
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Figure 1: Our problem formulation: In a training phase, our model is trained from various tasks with
heterogeneous attribute spaces. In a test phase, the trained model predicts a response of an attribute
vector using a few labeled data, where the attribute space of the target task are different from those of
the training tasks.

from the support set using an inference network. We design the inference network by effectively
combining multiple neural networks that accept variable length inputs, so that the latent vectors
contain information about their own empirical marginal distribution and relationships between other
attributes and responses. A prediction network predicts responses of queries using the latent vectors,
by which we can make predictions considering the properties of the attributes and responses that
are specific to each task. The parameters of the neural networks, which are shared across all tasks,
are estimated by minimizing the expected test error of the response predictions over tasks with
heterogeneous attribute spaces.

The following are the main contributions of this paper: 1) To the best of our knowledge, our work is
the first attempt at few-shot learning with tasks with heterogeneous attribute spaces. 2) We propose a
neural network-based model for obtaining the representations of attributes, responses, and instances
from datasets with any number of attributes, responses, and instances. 3) We empirically demonstrate
that the proposed method performs well in few-shot learning on tasks with heterogeneous attribute
spaces. The proposed method can be used for situations where we have data from multiple tasks
that are related to the target task but their attributes are different across tasks. For example, consider
anomaly detection for various machines in various factories. Although the attributes are different
across machines since they uses different sesing devices, there are related machines. We can detect
anomalies for a new machine in a new factory with only a few labeled data by utilizing data of
existing machines.

2 Related work

A number of frameworks have been proposed for few-shot learning, or meta-learning [27, 3], including
recurrent network-based [22], optimizer-based [1], nearest neighbor-based [31, 28, 2], gradient
descent-based [7, 18, 12, 8, 26, 35], and generative model-based methods [5, 9, 11, 10, 4, 23, 25].
These existing few-shot or meta-learning methods cannot learn from tasks with heterogeneous
attribute spaces. Our model is related to conditional neural processes [9] in the sense that both types
of methods infer task representations using neural networks. The neural process represents a task by
a single vector. On the other hand, our model represents a task by a set of latent attribute vectors and
latent response vectors to handle tasks with heterogeneous attribute spaces. Tasks with heterogeneous
attribute spaces have been considered in domain adaptation, or transfer learning [20, 38, 32, 34, 17,
33, 37], where source and target domains are assumed to have different attribute spaces. However,
these domain adaptation methods assume only two tasks (source and target) and require target datasets
for training. In contrast, the proposed method can handle more than two tasks and does not use target
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datasets for training. Although some domain adaptation methods do not require target datasets for
training [15], they are inapplicable to tasks with heterogeneous attribute spaces.

3 Proposed method

3.1 Problem formulation

Suppose that we are given datasets in multiple tasks with heterogeneous attribute spaces {Dd}Dd=1

at a training phase, where Dd = {(xdn,ydn)}Nd
n=1 is the set of the pairs of observed attribute and

response vectors in task d, xdn ∈ RId is the observed attribute vector of the nth instance, ydn ∈ RJd

is the observed response vector of the nth instance, Nd is the number of instances, Id is the number of
attributes, and Jd is the number of responses. The attributes and responses in a task can be different
from those in other tasks. The numbers of instances, attributes and responses can be different across
tasks Nd 6= Nd′ , Id 6= Id′ , and Jd 6= Jd′ .

At a test phase, we are given dataset on a target task Dd∗ = {(xd∗n,yd∗n)}Nd∗
n=1, which is called a

support set. Here, the number of instances Nd∗ is small. The target task is not contained in the given
training tasks d∗ 6∈ {1, . . . , D}, and the numbers of attributes and responses of the target task can
be different from those of the training tasks. We want to predict response yd∗ for observed attribute
vector xd∗ , which is called a query, in the target task.

3.2 Model

Figure 2: Our model for response prediction of
query x given support set S.

Our model predicts response ŷ of query attribute
vector x using support set S = {(xn,yn)}Nn=1,
where xn = (xni)

I
i=1 is the I-dimensional ob-

served attribute vector, yn = (ynj)
J
j=1 is the J-

dimensional observed response vector, and we
omit task index d for simplicity. We assume that
xni and ynj are scalar numerical values although
our framework is applicable to categorical val-
ues using one-hot encoding. Figure 2 shows
the procedure for response prediction with our
model. With our model, first, latent attribute vec-
tors, V = {vi}Ii=1, and latent response vectors,
C = {cj}Jj=1, are obtained using support set
S by an inference network, as described in Sec-
tion 3.2.1, where vi is the representation of the
ith attribute, and cj is the representation of the
jth response. Then with a prediction network,
latent instance vector z is obtained using latent
attribute vectors V and query attribute vector
x, and response ŷ is predicted using latent re-
sponse vectors C and latent instance vector z,
as described in Section 3.2.2.

3.2.1 Inference network

First, we calculate initial attribute representation v̄i and initial response representation c̄j using
support set S:

v̄i = gv̄

(
1

N

N∑
n=1

fv̄(xni)

)
, c̄j = gc̄

(
1

N

N∑
n=1

fc̄(ynj)

)
, (1)

where fv̄, gv̄, fc̄, and gc̄ are feed-forward neural networks. Eq. (1) is a permutation invariant
neural network [36] since the summation is invariant even when the elements are permuted, and
it can take any number of instances as input. The permutation invariance is appropriate since the
representation should not depend on the order of the instances in the support set. By using set of
values for the attribute {xni}Nn=1 (response {ynj}Nn=1) in Eq. (1), the information about the empirical
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marginal distribution of the attribute can be encoded in initial attribute representation v̄i (response
representation c̄i).

The initial attribute and response representations, v̄i and c̄j , do not contain information about the
relationship with other attributes and responses, since they are calculated only using their values,
{xni}Nn=1 or {ynj}Nn=1. To encode the information about all the attributes and responses of the
instance, we calculate the representation for the nth instance, un, using the initial attribute and
response representations:

un = gu

(
1

I

I∑
i=1

fu([v̄i, xni]) +
1

J

J∑
j=1

fu([c̄j , ynj ])

)
, (2)

where fu and gu are feed-forward neural networks, and [·, ·] represents the concatenation. With
Eq. (2), we obtain a fixed-size vector that represents an instance even when the numbers of attributes
and responses are different. By concatenating the representations and their values, [v̄i, xni] and
[c̄j , ynj ], we incorporate information on each attribute and response with a permutation invariant
neural network in Eq. (2).

Next, we calculate attribute representation vi and response representation cj using the instance
representations:

vi = gv

(
1

N

N∑
n=1

fv([un, xni])

)
, cj = gc

(
1

N

N∑
n=1

fc([un, ynj ])

)
, (3)

where fv, gv, fc, and gc are feed-forward neural networks. By concatenating instance representation
un and the ith attribute’s value xni, we encode the relationship of the ith attribute to the other
attributes and responses, since un contains the information about all attributes and responses of the
instance. We can obtain a deep version of attribute and response vectors by iterating Eqs. (2,3), where
v̄i and c̄j in Eq. (2) are replaced by vi and cj in Eq. (3) at the previous step.

3.2.2 Prediction network

Given observed attribute vector x = (xi)
I
i=1 as a query, we obtain latent instance vector z, which is

the query’s representation, using latent attribute vectors V:

z = gz

(
1

I

I∑
i=1

fz([vi, xi])

)
, (4)

where fz and gz are feed-forward neural networks. We encode information about the value for each
attribute by concatenating latent attribute vector vi and its value xi with a permutation invariant
neural network while allowing variable length inputs. Since responses are not given for queries, the
latent response vectors are not used.

We predict response ŷ on query x using latent instance vector z and latent response vectors C. In
particular, the jth response variable is predicted by

ŷj(x,S; Φ) = fy([cj , z]), (5)

where fy is a feed-forward neural network that outputs a scalar value. The prediction depends on
support set S and parameters Φ of the following neural networks: fv̄, gv̄, fc̄, gc̄, fu, gu, fv, gv, fc,
gc, fz, gz, and fy.

3.3 Training

We estimate neural network parameters Φ by minimizing the following loss that is calculated from
randomly generated support sets S and query sets Q using the given training datasets {Dd}Dd=1:

Φ̂ = arg min
Φ

EDd
[E(S,Q)∼Dd

[E(Q|S; Φ)]], (6)

where E represents an expectation,

E(Q|S; Φ) =
1

NQJQ

∑
(x,y)∈Q

JQ∑
j=1

‖ yj − ŷj(x,S; Φ) ‖2, (7)
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Algorithm 1 Training procedure of our model: RandomSample(S, N) generates a set of N elements
chosen uniformly at random from set S without replacement.
Input: Datasets from tasks with heterogeneous attribute spaces {Dd}Dd=1, number of support in-

stances NS, number of query instances NQ, batch size B
Output: Trained model parameters Φ

1: while End condition is satisfied do
2: Initialize loss, J ← 0
3: Select task indices for a mini batch,M← RandomSample({1, · · · , D}, B)
4: for d ∈M do
5: Generate support set, S ← RandomSample(Dd, NS)
6: Generate query set, Q ← RandomSample(Dd, NQ)
7: Calculate loss by Eq. (7), J ← J + E(Q|S; Φ), and its gradients
8: end for
9: Update model parameters Φ using loss J and its gradient

10: end while

is the loss on the query set given the support set, NQ is the number of instances in the query set, and
JQ is the number of responses in the query set. The training procedure of our model is shown in
Algorithm 1.

3.4 Classification

In previous subsections, we assume regression tasks, where responses are numerical values. For
classification tasks, where responses are categorical values, we use a nearest neighbor-based approach.
In particular, a prototype for each class is obtained by the mean of the latent instance vectors of the
support instances that belong to the class: ẑjk = 1

|Sjk|
∑

(x,y)∈Sjk gz

(
1
I

∑I
i=1 fz([vi, xi])

)
, where

ẑjk is the prototype of class k in the jth response, Sjk = {xn|yjn = k,xn ∈ S} is the support
instances that belongs to class k in the jth response, and the latent instance vectors are calculated
based on Eq. (4). Then, the class probability is calculated by the distance between the query latent
instance vector and prototypes: p̂(yj = k|x,S; Φ) =

exp(−‖z−ẑjk‖2)∑Kj

k′=1
exp(−‖z−ẑjk′‖2)

, where z is the query’s

latent instance vector in Eq. (4), and Kj is the number of classes in the jth response. We use the
cross-entropy loss for classification tasks instead of the mean squared error in Eq. (7).

4 Experiments

4.1 Synthetic data

Data We first evaluated the proposed method on simple synthetic regression tasks with one- or
two-dimensional attribute spaces and a one-dimensional response space. One third of the tasks
were generated from a one-dimensional linear model, y = wdx, one third were generated from a
one-dimensional sine curve, y = sin(x + 3wd), and the remaining tasks were generated from the
following two-dimensional model, y = wd1x1 + sin(x2 + 3wd2). Attributes x, x1, and x2 were
uniform randomly generated from [−3, 3], and task-specific model parameters wd, wd1, and wd2

were uniform randomly generated from [−1, 1]. We generated 10,000 training, 30 validation, and
300 target tasks. The number of support instances was NS = 5, and the number of query instances
was NQ = 27.

Proposed method settings We used three-layered feed-forward neural networks with 32 hidden
units for all neural networks. The parameters were shared between the following pairs of neural
networks: (fv̄, fc̄), (gv̄, gc̄), (fv, fc), (gv, gc), and The number of units at the output layer for fy was
one, and it was 32 for the other neural networks. We used rectified linear unit, ReLU(x) = max(0, x),
for the activation. We optimized using Adam [14] with learning rate 10−3 and dropout rate 0.1. The
validation data were used for early stopping. The batch size was B = 256. We implemented the
proposed method with PyTorch [21].
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(a) (c) (e)

(b) (d) (f)

Figure 3: Prediction by the proposed method for target tasks
in the synthetic datasets: Red circles are five target support
instances, blue crosses are true target query instances, and
green triangles are predicted target query instances with the
proposed method.

Figure 4: t-SNE visualization of
latent attribute vectors vdi for tar-
get support sets in the synthetic
datasets: The color indicates the at-
tribute index; red: x in y = wdx,
green: x in y = sin(x + 3wd),
blue and magenta: x1 and x2 in
y = wd1x1 + sin(x2 + 3wd2).

Results The results by the proposed method with the six target tasks are shown in Figure 3. The
proposed method appropriately learned two-dimensional linear (a, b) and nonlinear (c, d) relationships
as well as a three-dimensional relationship with a single model. Figure 4 shows the visualization of
latent attribute vectors vdi inferred from each target support set in the synthetic data, where the latent
attribute vectors in all the tasks were simultaneously embedded in the same two-dimensional space
by t-SNE [19]. The latent attribute vectors with the same attribute property were closely located to
each other.

4.2 OpenML datasets

Data We next evaluated the proposed method on tasks with heterogeneous attribute spaces obtained
from OpenML [29], which is an open online platform for machine learning that holds various tasks.
Using a python API for OpenML [6], we obtained datasets based on the following conditions: the
number of instances was between 10 and 300, the number of attributes was between 2 and 30, and all
the attributes were numerical values. Then we omitted datasets that had the same number of instances
and the same number of attributes, and we obtained 59 datasets in total. The number of instances and
attributes for each dataset is shown in the supplemental material. We normalized the values for each
attribute with a mean of zero and a variance of one. The last attribute was used as the response for
each dataset. We randomly split the 59 tasks into 37 training, 5 validation, and 17 target tasks. The
number of support instances was NS = 3, and the number of query instances was NQ = 29.

Proposed method settings We used the same neural network architecture with the synthetic data
experiments. The number of epochs was 100,000, and the batch size was B = 37. Since an attribute
in a task can resemble a response in another task, we randomly selected attributes and a response
from a mix of attributes and responses in each task for the support and query sets for each training
iteration.

Comparing methods We compared the proposed method with the following 13 methods: deep
set [36] (DS), DS with fine-tuning (DS+FT), DS with model-agnostic meta-learning [7] (DS+MAML),
conditional neural process [9] (NP), NP with fine-tuning (NP+FT), NP with model-agnostic meta-
learning (NP+MAML), linear regression with L2 regularization (Ridge), linear regression with L1
regression (Lasso), Bayesian ridge regression (BR), kernel ridge regression with a linear kernel (KR),
Gaussian process regression with an RBF kernel (GP), neural network (NN), and the mean of the
support set (Mean). DS, DS+FT, DS+MAML, NP, NP+FT, NP+MAML, and the proposed method
used the training datasets for training. Ridge, Lasson, BR, KR, GP, NN, and mean did not use the
training datasets, but used the support set of the target task for training. The details of the comparing
methods are described in the supplemental material.
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Table 1: Averaged mean squared errors and standard errors on the target tasks with the OpenML
datasets. Values in bold typeface are not statistically different at 5% level from the best performing
method in each row by a paired t-test.

Method MSE Method MSE Method MSE
Ours 0.788 ± 0.011 NP+FT 0.907 ± 0.013 KR 0.828 ± 0.021
DS 0.896 ± 0.011 NP+MAML 0.845 ± 0.012 GP 1.113 ± 0.112
DS+FT 0.887 ± 0.011 Ridge 1.179 ± 0.038 NN 1.107 ± 0.028
DS+MAML 0.854 ± 0.011 Lasso 1.281 ± 0.024 Mean 1.347 ± 0.025
NP 0.845 ± 0.012 BR 1.544 ± 0.134

1 2 3 4 5
support set size

0.75

0.80

0.85

0.90

0.95

1.00

1.05

M
SE

Ours
DS
DS+FT
DS+MAML
NP
NP+FT
NP+MAML
KR

Figure 5: Averaged mean squared errors with
different numbers of instances in a support set
at a test phase with the OpenML datasets: The
bar shows the standard error.

10 20 30
#training tasks

0.8

0.9

1.0

1.1

M
SE

Ours
DS
DS+FT
DS+MAML
NP
NP+FT
NP+MAML

Figure 6: Averaged mean squared errors with
different numbers of training tasks with the
OpenML datasets: The bar shows the standard
error.

Table 2: Training computational time in hours.

Ours DS DS+FT DS+MAML NP NP+FT NP+MAML
7.5 3.5 10.0 34.2 7.2 22.3 101.0

Results Table 1 shows the mean squared error averaged over 30 experiments with different training,
validation, and target splits. The proposed method achieved the lowest error. DS+MAML outper-
formed DS and DS+FT, but it was worse than the proposed method. One of the reasons is that finding
good initial parameters that quickly adapt to various tasks with heterogeneous attribute spaces was
difficult with MAML. Since NP obtained representation for each task using a permutation invariant
neural network, it could not explicitly model the characteristics for each attribute in a task. On the
other hand, since the proposed method obtained representations for each attribute by effectively
combining multiple permutation invariant neural networks, the proposed method achieved better
performance. The mean squared error for each target task and the computational time is shown in
the supplemental material. Table 2 shows the computational time for training 37 tasks on computers
with 2.60GHz CPUs. The training time of the proposed method was shorter than MAML since the
proposed method does not require iterative gradient descent steps for adapting to a support set. The
computational time of the proposed method for testing 17 target tasks was 0.26 seconds. In the
test phase, the proposed method efficiently predicted responses without optimization by feeding the
support and query sets into the trained neural networks.

Figure 5 shows the averaged mean squared errors when we changed the number of instances in a
support set at a test phase. In a training phase, models are trained with support set size NS = 3. We
omit the Ridge, Lasso, BR, GP, NN and Mean because of their high errors as shown in Table 1. With
all methods except for DS, which did not use support sets, the error decreased as the support set size
increased. The proposed method achieved the best in all cases.

Figure 6 shows the averaged mean squared errors with different numbers of training tasks. The error
by the proposed method was the lowest with all numbers of training tasks. As the number of training
tasks increased, the error decreased. By using more training tasks, tasks that resemble the target
tasks are more likely to be included in the training. The proposed method learned a wide variety of
patterns in the training tasks with different attribute spaces, and adequately used them for improving
the performance on the target tasks.
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Target task Training tasks with the lowest errors

33 (0.01) 9 (0.03) 5 (0.03) 37 (0.04)
Training tasks with the highest errors

36 (2.28) 30 (1.36) 54 (1.23)

Figure 8: Scatter matrix plot for each task in the OpenML datasets: The horizontal and vertical axes
are the attribute indexes. The left plot is the target task, and the three right plots at the top are the
training tasks that achieved the lowest errors on the target task, and the three plots at the bottom are
the training tasks that achieved the highest errors on the target task. The values below each plot are
the task index and mean squared error of the target task when the task was used for training.

For analyzing the effectiveness of each task to improve the performance when used for training, we
experimented with a single training task and a single target task for all task pairs. Figure 7 shows the
result. Training tasks that improved the performance were different across the target tasks, and some
training tasks deteriorated the performance depending on the target tasks. Figure 8 shows a scatter
matrix plot of a target task and the training tasks with the lowest and highest errors on the target task.
The training tasks with the lowest errors and the target task exhibit similar patterns. On the other
hand, the training tasks with the highest errors exhibit different patterns from the target task. Since
the proposed method can learn various patterns in different attribute spaces, the proposed method can
exploit the knowledge learned from related tasks without being adversely influenced by unrelated
tasks, which resulted in the lowest error when learned from multiple tasks as shown in Table 1.
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Figure 7: Averaged mean squared errors by
the proposed method for each pair of training
and target tasks with the OpenML datasets:
The vertical axis is the training task index, and
the horizontal axis is the target task index.

For ablation study, we evaluated the proposed method
when we changed the number of iterations of
Eqs.(2,3) for obtaining the latent attribute vectors
and latent response vectors in the inference network
as described the last sentence in Section 3.2.1. Let L
be the number of iterations. When L = 0, the initial
representations were used, i.e., vi = v̄i and ci = c̄i
in Eq. (1) were used. The error with L = 0 in Table 3
was higher than the proposed method with L = 1
because the relationships across different attributes
and responses were not encoded in the latent attribute
and latent response vectors when L = 0. There was a
small improvement from L = 1 to L = 2, but no fur-
ther improvement after L > 2. We also evaluated the
proposed method without sampling of attributes and
responses for training, which was described in the
second paragraph of Section 4.2. The error increased
when the sampling was omitted as shown in Table 3
(w/o sampling). This result indicates that generating
a wider variety of tasks by sampling attributes and
responses is important to improve the performance
on various target tasks.
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Table 3: Ablation study. The averaged mean squared errors on the target tasks with the OpenML
datasets by the proposed method with the different number of iterations L on Eqs. (2,3), and the
proposed method without attribute and response sampling for training (w/o sampling).

L = 0 L = 1 L = 2 L = 3 L = 4 L = 5 w/o sampling
0.834 0.788 0.777 0.778 0.778 0.781 0.848

Table 4: Averaged accuracies and standard errors on the target tasks with the OpenML classification
datasets. Values in bold typeface are not statistically different at 5% level from the best performing
method in each row by a paired t-test.

Method Accuracy Method Accuracy Method Accuracy
Ours 0.646 ± 0.006 NP+FT 0.599 ± 0.006 NN 0.626 ± 0.006
DS 0.621 ± 0.006 NP+MAML 0.622 ± 0.007 AB 0.584 ± 0.006
DS+FT 0.616 ± 0.006 KNN 0.630 ± 0.005 NB 0.630 ± 0.005
DS+MAML 0.612 ± 0.006 DT 0.592 ± 0.006 MF 0.555 ± 0.005
NP 0.608 ± 0.006 RF 0.596 ± 0.006

Classification We evaluated our proposed classifi-
cation method with OpenML datasets, where the response was binarized depending on whether the
value is above the mean or not for each task. We compared the proposed method with DS, DS+FT,
DS+MAML, NP, NP+FT, NP+MAML, k-nearest neighbor method (KNN), decision tree (DT), ran-
dom forest (RF), neural network (NN), Adaboost (AB), naive Bayes (NB), and most frequent class
(MF), where KNN, DT, RF, NN, AB, NB, and MF were trained with the support set of the target task.
Table 4 shows the accuracy on the target tasks averaged over 30 experiments. The proposed method
achieved the highest accuracy.

5 Conclusion

We proposed a neural network-based meta-learning method that learns from multiple tasks with
different attribute spaces, and predicts a response given a few instances in unseen tasks. Although we
believe that our work is an important step for learning from a wide variety of tasks, we must extend
our approach in several directions. First, we plan to improve the efficiency of the training procedure.
Second, we will investigate different types of neural networks with variable length inputs for inferring
latent attribute and response vectors, such as attentions [30, 24, 11, 16]. Third, we want to extend the
proposed method to use prior knowledge about attributes, such as correspondence information across
tasks and descriptions on attributes.

Broader impact

The proposed method improves regression/classification performance even when a small number
of labeled data are given by training from various tasks whose attribute spaces are different from
the target tasks. The proposed method can be used for applications where machine learning has
not been used due to the scarcity of labeled data. The proposed method could reduce the cost of
manual labeling for increasing labeled data. Since the proposed method can use various datasets with
heterogeneous attribute spaces for training, there is a potential risk that users might include biased
datasets without careful thought in training datasets, which might result in biased predictions. We
encourage research to automatically detect biased datasets. Although the proposed method improves
performance, the prediction might be not always correct. We encourage research to estimate the
uncertainty of the prediction by meta-learning from tasks with heterogeneous attribute spaces.
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