Generative Models for Graph-Based Protein Design

Part of Advances in Neural Information Processing Systems 32 (NeurIPS 2019)

AuthorFeedback »Bibtex »Bibtex »MetaReview »Metadata »Paper »Reviews »


John Ingraham, Vikas Garg, Regina Barzilay, Tommi Jaakkola


<p>Engineered proteins offer the potential to solve many problems in biomedicine, energy, and materials science, but creating designs that succeed is difficult in practice. A significant aspect of this challenge is the complex coupling between protein sequence and 3D structure, with the task of finding a viable design often referred to as the inverse protein folding problem. We develop relational language models for protein sequences that directly condition on a graph specification of the target structure. Our approach efficiently captures the complex dependencies in proteins by focusing on those that are long-range in sequence but local in 3D space. Our framework significantly improves in both speed and robustness over conventional and deep-learning-based methods for structure-based protein sequence design, and takes a step toward rapid and targeted biomolecular design with the aid of deep generative models.</p>