
Generative models for graph-based protein design

John Ingraham, Vikas K. Garg, Regina Barzilay, Tommi Jaakkola
Computer Science and Artificial Intelligence Lab, MIT

{ingraham, vgarg, regina, tommi}@csail.mit.edu

Abstract

Engineered proteins offer the potential to solve many problems in biomedicine,
energy, and materials science, but creating designs that succeed is difficult in
practice. A significant aspect of this challenge is the complex coupling between
protein sequence and 3D structure, with the task of finding a viable design often
referred to as the inverse protein folding problem. In this work, we introduce a
conditional generative model for protein sequences given 3D structures based on
graph representations. Our approach efficiently captures the complex dependencies
in proteins by focusing on those that are long-range in sequence but local in 3D
space. This graph-based approach improves in both speed and reliability over
conventional and other neural network-based approaches, and takes a step toward
rapid and targeted biomolecular design with the aid of deep generative models.

1 Introduction

A central goal for computational protein design is to automate the invention of protein molecules
with defined structural and functional properties. This field has seen tremendous progess in the past
two decades [1], including the design of novel 3D folds [2], enzymes [3], and complexes [4]. Despite
these successes, current approaches are often unreliable, requiring multiple rounds of trial-and-error
in which initial designs often fail [5, 6]. Moreover, diagnosing the origin of this unreliability is
difficult, as contemporary bottom-up approaches depend both on the accuracy of complex, composite
energy functions for protein physics and also on the efficiency of sampling algorithms for jointly
exploring the protein sequence and structure space.

Here, we explore an alternative, top-down framework for protein design that directly learns a
conditional generative model for protein sequences given a specification of the target structure, which
is represented as a graph over the residues (amino acids). Specifically, we augment the autoregressive
self-attention of recent sequence models [7] with graph-based representations of 3D molecular
structure. By composing multiple layers of this structured self-attention, our model can effectively
capture higher-order, interaction-based dependencies between sequence and structure, in contrast to
previous parameteric approaches [8, 9] that are limited to only the first-order effects.

A graph-structured sequence model offers several benefits, including favorable computational effi-
ciency, inductive bias, and representational flexibility. We accomplish the first two by leveraging
a well-evidenced finding in protein science, namely that long-range dependencies in sequence are
generally short-range in 3D space [10–12]. By making the graph and self-attention similarly sparse
and localized in 3D space, we achieve computational scaling that is linear in sequence length. Addi-
tionally, graph structured inputs offer representational flexibility, as they accomodate both coarse,
‘flexible backbone’ (connectivity and topology) as well as fine-grained (precise atom locations)
descriptions of structure.

We demonstrate the merits of our approach via a detailed empirical study. Specifically, we evaluate
our model’s performance for structural generalization to sequences of protein 3D folds that are
topologically distinct from those in the training set. For fixed-backbone sequence design, we find that

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

our model achieves considerably improved statistical performance over a prior neural-network based
model and also that it achieves higher accuracy and efficiency than Rosetta fixbb, a state-the-art
program for protein design.

The rest of the paper is organized as follows. We first position our contributions with respect to the
prior work in Section 1.1. We provide details on our methods, including structure representation,
in Section 2. We introduce our Structured Transformer model in Section 2.2. The details of our
experiments are laid out in Section 3, and the corresponding results that elucidate the merits of our
approach are presented in Section 4.

1.1 Related Work

Generative models for protein sequence and structure A number of works have explored the
use of generative models for protein engineering and design [13]. [8, 9, 14] have used neural network-
based models for sequences given 3D structure, where the amino acids are modeled independently of
one another. [15] introduced a generative model for protein sequences conditioned on a 1D, context-
free grammar based specification of the fold topology. Multiple works [16, 17] have modeled the
conditional distribution of single amino acids given surrounding structure and sequence context with
convolutional neural networks. In contrast to these works, our model captures the joint distribution
of the full protein sequence while grounding these dependencies in terms of long-range interactions
arising from structure.

In parallel to the development of structure-based models, there has been considerable work on deep
generative models for protein sequences in individual protein families [18–21]. While useful, these
methods presume the availability of a large number of sequences from a particular family, which are
unavailable in the case of designing novel proteins that diverge significantly from natural sequences.

Several groups have obtained promising results using unconditional protein language models [22–25]
to learn sequence representations that transfer well to supervised tasks. While serving different
purposes, we emphasize that one advantage of conditional generative modeling is to facilitate
adaptation to specific (and potentially novel) parts of structure space. Language models trained
on hundreds of millions of evolutionary sequences will still be ‘semantically’ bottlenecked by the
thousands of 3D evolutionary folds that these sequences represent. We propose evaluating protein
language models with structure-based splitting of sequence data, and begin to see how unconditional
language models may struggle to assign high likelihoods to sequences from out-of-training folds.

In a complementary line of research, several deep and differentiable parameterizations of protein
structure [26–29] have been recently proposed that could be used to generate, optimize, or validate
3D structures for input to sequence design.

Protein design and interaction graphs For classical approaches to computational protein design,
which are based on joint modeling of structure and sequence, we refer the reader to a review of
both methods and accomplishments in [1]. Many of the major ‘firsts’ in protein design are due to
Rosetta [30, 31], a leading framework for protein design. More recently, there have been successes
with non-parametric approaches to protein design [32] which are based on finding substructural
homologies between the target and diverse templates in large protein database. In this work, we focus
on comparisons to Rosetta (Section 4.2), since it is based on a single parametric energy function for
capturing the sequence-structure relationship.

Self-Attention Our model extends the Transformer [33] to capture sparse, pairwise relational
information between sequence elements. The dense variation of this problem was explored in [34]
and [35]. As noted in those works, incorporating general pairwise information incursO(N2) memory
(and computational) cost for sequences of length N , which can be highly limiting for training on
GPUs. We circumvent this cost by instead restricting the self-attention to the sparsity of the input
graph. Given this graph-structured self-attention, our model may also be reasonably cast in the
framework of message-passing or graph neural networks [36, 37] (Section 4.1). Our approach is
similar to Graph Attention Networks [38], but augmented with edge features and an autoregressive
decoder.

2

A

Structure G

Self-attention

Position-wise Feedforward

Node embeddingsEdge embeddings

 Causal Self-attention

Position-wise Feedforward

Sequence s

Encoder

Decoder

Structure and sequence

B

M

S

G

I

A

V S

Structure Encoder Sequence Decoder (autoregressive)

StructureNode (amino acid)

Backbone

Information flow

Figure 1: A graph-based, autoregressive model for protein sequences given 3D structures. (A)
We cast protein design as language modeling conditioned on an input graph. In our architecture, an
encoder develops a sequence-independent representation of 3D structure via multi-head self-attention
[7] on the spatial k-nearest neighbors graph. A decoder then autoregressively generates each amino
acid si given the full structure and previously decoded amino acids. (B) Each layer of the encoder
and decoder contains a step of neighborhood aggregation (self-attention) and of local information
processing (position-wise feedforward).

2 Methods

In this work, we introduce a Structured Transformer model that draws inspiration from the self-
attention based Transformer model [7] and is augmented for scalable incorporation of relational
information (Figure 1). While general relational attention incurs quadratic memory and computation
costs, we avert these by restricting the attention for each node i to the set N(i, k) of its k-nearest
neighbors in 3D space. Since our architecture is multilayered, iterated local attention can derive
progressively more global estimates of context for each node i. Second, unlike the standard Trans-
former, we also include edge features to embed the spatial and positional dependencies in deriving
the attention. Thus, our model generalizes Transformer to spatially structured settings.

2.1 Representing structure as a graph

We represent protein structure in terms of an attributed graph G = (V, E) with node features
V = {v1, . . . ,vN} describing each residue (amino acid, which are the letters which compose a
protein sequence) and edge features E = {eij}i 6=j capturing relationships between them. This
formulation can accommodate different variations on the macromolecular design problem, including
both ‘rigid backbone’ design where the precise coordinates of backbone atoms are fixed, as well
as ‘flexible backbone’ design where softer constraints such as blueprints of hydrogen-bonding
connectivity [5] or 1D architectures [15] could define the structure of interest.

3D considerations For a rigid-body design problem, the structure for conditioning is a fixed set
of backbone coordinates X = {xi ∈ R3 : 1 ≤ i ≤ N}, where N is the number of positions1. We
desire a graph representation of the coordinates G(X) that has two properties:

• Invariance. The features are invariant to rotations and translations.

• Locally informative. The edge features incident to vi due to its neighbors N(i, k),
i.e. {eij}j∈N(i,k), contain sufficient information to reconstruct all adjacent coordinates
{xj}j∈N(i,k) up to rigid-body motion.

While invariance is motivated by standard symmetry considerations, the second property is motivated
by limitations of current graph neural networks [36]. In these networks, updates to node features

1Here we consider a single representative coordinate per position when deriving edge features but may revisit
multiple atom types per position for features such as backbone angles or hydrogen bonds.

3

A Edge features

k-NN

Distances

Sparse directions

Relations

Backbone structure

Distance Direction Rotation

Point cloud with local frames

B

Figure 2: Spatial features capture structural relationships across diverse folds. (A) The edge
features of our most detailed protein graph representation capture the relative distance, direction, and
orientation between two positions on the backbone. For scalability, all computation after an initially
dense Euclidean distance calculation (right, top), such as relative directions (right, bottom) and neural
steps, can be restricted to the k-Nearest Neighbors graph. (B) Example of topological variation in the
dataset. Protein chains in train, test, and validation are split by the sub-chain CATH [40] topologies,
which means that folds in each set will have distinct patterns of spatial connectivity.

vi depend only on the edge and node features adjacent to vi. However, typically, these features are
insufficient to reconstruct the relative neighborhood positions {xj}j∈N(i,k), so individual updates
cannot fully depend on the ‘local environment’. For example, when reasoning about the neighborhood
around coordinate xi, the pairwise distances Dia and Dib will be insufficient to determine if xa and
xb are on the same or opposite sides.

Relative spatial encodings We develop invariant and locally informative features by first augment-
ing the points xi with ‘orientations’ Oi that define a local coordinate system at each point (Figure 2).
We define these in terms of the backbone geometry as

Oi = [bi ni bi × ni] ,

where bi is the negative bisector of angle between the rays (xi−1 − xi) and (xi+1 − xi), and ni is a
unit vector normal to that plane. Formally, we have

ui =
xi − xi−1
||xi − xi−1||

, bi =
ui − ui+1

||ui − ui+1||
, ni =

ui × ui+1

||ui × ui+1||
.

Finally, we derive the spatial edge features e
(s)
ij from the rigid body transformation that relates

reference frame (xi,Oi) to reference frame (xj ,Oj). While this transformation has 6 degrees of
freedom, we decompose it into features for distance, direction, and orientation as

e
(s)
ij =

�
r (||xj − xi||) , OT

i

xj − xi
||xj − xi||

, q
�
OT
i Oj

�
�
.

Here the first vector is a distance encoding r (·) lifted into a radial basis2, the second vector is a
direction encoding that corresponds to the relative direction of xj in the reference frame of (xi,Oi),
and the third vector is an orientation encoding q(·) of the quaternion representation of the spatial
rotation matrix OT

i Oj . Quaternions represent 3D rotations as four-element vectors that can be
efficiently and reasonably compared by inner products [39].3

Relative positional encodings As in the original Transformer, we also represent distances between
residues in the sequence (rather than space) with positional embeddings e(p)ij . Specifically, we need
to represent the positioning of each neighbor j relative to the node under consideration i. Therefore,

2We used 16 Gaussian RBFs isotropically spaced from 0 to 20 Angstroms.
3We represent quaternions in terms of their vector of real coefficients.

4

