Multi-Class Learning: From Theory to Algorithm

Part of Advances in Neural Information Processing Systems 31 (NeurIPS 2018)

Bibtex »Metadata »Paper »Reviews »Supplemental »


Jian Li, Yong Liu, Rong Yin, Hua Zhang, Lizhong Ding, Weiping Wang


In this paper, we study the generalization performance of multi-class classification and obtain a shaper data-dependent generalization error bound with fast convergence rate, substantially improving the state-of-art bounds in the existing data-dependent generalization analysis. The theoretical analysis motivates us to devise two effective multi-class kernel learning algorithms with statistical guarantees. Experimental results show that our proposed methods can significantly outperform the existing multi-class classification methods.