
Appendix: Multi-Class Learning: From Theory to
Algorithm

1 Appendix A : Proof of Theorem 1

Theorem 1. With probability at least 1− δ, we have

R(Lr) ≤ cd,ϑξ(K)
√
ζr log

3
2 (n)√

n
+

4 log(1/δ)

n
,

where

ξ(K) =

{√
e(4 logK)1+ 1

2 logK , if q ≥ 2 logK,

(2q)1+ 1
qK

1
q , otherwise,

cd,ϑ is a constant depends on d and ϑ.

To prove theorem 1, we first introduce the following two lemmas.

Lemma 1. [5] Suppose that L is defined in equation (2) in the paper, then we have

R̂(L) ≤
√

2π

n
Eg sup

h=(h1,...,hK)∈Hp,κ

n∑
i=1

K∑
j=1

g(j−1)n+ihj(xi),

where g1, . . . , gnK are independent N(0, 1) random variables.

Proof. The empirical Gaussian complexities ofHp,κ is denote as

Ĝ(Hp,κ) = Eg

[
sup

h∈Hp,κ

1

n

n∑
i=1

gih(xi)

]
,

where g1, . . . , gn are independent N(0, 1) random variables. For any γ > 0, let ργ,h(x, y) be

ργ,h(x, y) = h(x, y)−max
y′∈Y

[h(x, y′)− γ1y′=y]

= min
y′∈Y

[h(x, y)− h(x, y′) + γ1y′=y].

It is easy to checked that ργ,h(x, y) = min(ρh(x, y), γ). For the fixed parameter γ = c`, we observe
that ργ,h(x, y) = min(ρh(x, y), c`). If ρh(x, y) > c`, we get

`(ργ,h(x, y)) = `(c`) = 0 = `(ρh(x, y)).

Thus, we have ργ,h(x, y) = ρh(x, y). Therefore, for any z = (x, y) ∈ Z we have `(ργ,h(x, y)) =
`(ρh(x, y)), and

Lγ := {ργ,h(x, y) : h ∈ Hp,κ} = L.
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Thus, Lγ satisfies the following inequality:

R̂(L) = R̂(Lγ)

=
1

n
Eσ

n∑
i=1

σi

(
h(xi, yi)−max

y∈Y
(h(xi, yi)− γ1y=yi)

)

≤ 1

n
Eσ sup

h∈Hp,κ

[
n∑
i=1

σih(xi, yi)

]
+

1

n
Eσ

[
sup

h∈Hp,κ

n∑
i=1

σi max
y∈Y

(h(xi, yi)− γ1y=yi)

]

= R̂(Hp,κ) + Eσ

[
sup

h∈Hp,κ

1

n

n∑
i=1

σi max
y∈Y

(h(xi, yi)− γ1y=yi)

]
From [4], we know that

R̂(Hp,κ) ≤
√
π

2
Ĝ(Hp,κ).

According to the Lemma 4 of [5], we have

Ĝ(Hp,κ) ≤ 1

n
Eg sup

h=(h1,...,hK)∈H

n∑
i=1

K∑
j=1

g(j−1)n+ihj(xi)

Thus, we have

R̂(L) ≤ 1

n

√
π

2
Eg sup

h=(h1,...,hK)∈H

n∑
i=1

K∑
j=1

g(j−1)n+ihj(xi)+

1

n

√
π

2
Eg [gi max(h1(xi)− γ1yi=1, . . . , hc(xi)− γ1yi=c)]︸ ︷︷ ︸

:=A3

.

In the next, we bound A3:

A3 ≤ Eg sup
h=(h1,...,hK)∈Hp,κ

n∑
i=1

K∑
j=1

g(j−1)n+i (hj(xi)− γ1yi=c)

= Eg sup
h=(h1,...,hK)∈Hp,κ

n∑
i=1

K∑
j=1

g(j−1)n+i (hj(xi))− Eg
n∑
i=1

K∑
j=1

g(j−1)n+iγ1yi=j︸ ︷︷ ︸
=0

= Eg sup
h=(h1,...,hK)∈Hp,κ

n∑
i=1

K∑
j=1

g(j−1)n+i (hj(xi)) .

With this inequality, we immediately derive the following bound on R̂(L):

R̂(L) ≤
√

2π

n
Eg sup

h=(h1,...,hK)∈H

n∑
i=1

K∑
j=1

g(j−1)n+ihj(xi).

Lemma 2. [5] Let g be N(0, 1) distributed. For any p > 0, the p-th moment of g can be bounded by

[E|g|p]
1
p ≤ (2p)

1
2 + 1

p . (1)

Proof. Let Γ(n) = (n − 1)! be the Gamma function. The p-th moment of a N(0, 1) distributed
random variable can be exactly expressed via Gamma function [12]:

[Eg|g|p]
1
p =

2
p
2

√
π

Γ

(
p+ 1

2

)
≤ 2

p
2

√
π

⌈
p− 1

2

⌉
!.

2



According to the Stirling’s approximation in [8], we can obtain that

[Eg|g|p]
1
p ≤ 2

p
2

√
π

⌈
p− 1

2

⌉
!

Stirling’s approximation
≤ 2

p
2

√
π

√
2π

⌈
p− 1

2

⌉d p−1
2 e!+ 1

2

≤ (2p)
p
2 +1.

Proposition 1. [5] Suppose that L is defined in equation (2) in the paper, then we have

R̂(L) ≤
√
ϑ√
n
×

{√
e(4 logK)1+ 1

2 logK , if p∗ ≥ 2 logK,

(2p∗)1+ 1
p∗K

1
p∗ , otherwise.

Proof. From Lemma 1, we know that

R̂(L) ≤
√

2π

n
Eg sup

h=(h1,...,hK)∈Hp,κ

n∑
i=1

K∑
j=1

g(j−1)n+ihj(xi)︸ ︷︷ ︸
:=A1

, (2)

where g1, . . . , gnK are independent N(0, 1) random variables. In the next, we will bound A1. To
this end, we denote by ‖ · ‖∗ dual norm of ‖ · ‖, i.e.,

‖w‖∗ := sup
‖w′‖≤1

〈w,w′〉.

For a convex function f , we denote by f∗ its Fenchel conjugate, i.e.,

f∗(ν) := sup
w

[〈w, ν〉 − f(w)] .

From Corollary 4 in [2], we know that, if f is η-strongly convex w.r.t ‖ · ‖ and f∗(0) = 0, then for
any sequence ν1, . . . , νn and for any µ we have

n∑
i=1

〈νi, µ〉 − f(µ) ≤
n∑
i=1

〈∇f∗(νi:i−1), ν〉+
1

2η

n∑
i=1

‖νi‖2∗,

where ν1:i denotes the sum
∑i
j=1 νj . Let q be any number satisfying p ≤ q ≤ 2. Introduce the

function fq(w) = 1
2‖w‖

2
2,q . It is easy to verify that

fq(w) =
1

2
‖w‖22,q ≤

1

2
‖w‖22,p ≤

1

2
.

Since fq(w) is 1
q∗ -strongly convex w.r.t ‖ · ‖2,q∗ . Let

νi = (giφ(xi), gn+iφ(xi), . . . , g(K−1)n+iφ(xi)),

µ = (w1, . . . ,wK),

we can obtain that

λ sup
h∈Hq,κ

n∑
i=1

c∑
j=1

g(j−1)n+i〈wj , φ(xi)〉

= sup
h∈Hq,κ

n∑
i=1

〈(w1, . . . ,wK), λνi〉

≤ sup
h∈Hq,κ

fq(w) +

n∑
i=1

〈f∗(ν1:i−1), λνi〉+

n∑
i=1

q∗λ2

2
‖νi‖22,q∗ .
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Taking expectation on both sides w.r.t. g1, . . . , gnK , we can obtain that

Eg sup
h∈Hq,κ

n∑
i=1

K∑
j=1

g(j−1)n+i〈wj , φ(xi)〉

≤ 1

2λ
+ Eg

n∑
i=1

〈f∗(ν1:i−1), νi〉︸ ︷︷ ︸
=0

+

n∑
i=1

q∗λ

2
‖νi‖22,q∗

=
1

2λ
+
q∗λ

2

n∑
i=1

‖νi‖22,q∗ .

Choosing λ = 1√
q∗

∑n
i=1 ‖νi‖22,q∗

, the above inequality translates to

Eg sup
h∈Hq,κ

n∑
i=1

K∑
j=1

g(j−1)n+i〈wj , φ(xi)〉

≤

√√√√q∗
n∑
i=1

‖νi‖22,q∗

≤

√√√√√√q∗
n∑
i=1

Eg‖(giφ(xi), . . . , g(K−1)n+iφ(xi))‖22,q∗︸ ︷︷ ︸
:=A2

. (3)

In the next, we bound A2:

A2 =

n∑
i=1

Eg

 K∑
j=1

‖g(j−1)n+iφ(xi)‖q
∗

2

 2
q∗

=

n∑
i=1

Eg

 K∑
j=1

|g(j−1)n+i|q
∗

 2
q∗

k(xi,xi)

symmetry
= Eg

 K∑
j=1

|gj |q
∗

 2
q∗ n∑

i=1

k(xi,xi)

Jensen’s Inequality
≤

Eg K∑
j=1

|gj |q
∗

 2
q∗ n∑

i=1

k(xi,xi)

=
[
KEg1 |g1|q

∗
] 2
q∗

n∑
i=1

k(xi,xi)

≤ K
2
q∗
[
Eg1 |g1|q

∗
] 2
q∗
nϑ.

Substituting the above inequality in (10) in the paper, we have

Eg sup
h∈Hq,κ

n∑
i=1

K∑
j=1

g(j−1)n+i〈wj , λφ(xi)〉 ≤ K
1
q∗
√
q∗
[
Eg1 |g1|q

∗
] 1
q∗ √

nϑ.

From the trivial inequality ‖w‖2,p ≥ ‖w‖2,q, we know that Hp,κ ⊂ Hq,κ. Combining the above
equation and (9) in the paper, we have

R̂(L) ≤ inf
p≤q≤2

√
2ϑπ√
n
K

1
q∗
√
q∗
[
Eg1 |g1|q

∗
] 1
q∗
.
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It can be directly checked that the function t→
√
tc1/t is decreasing along the interval (0, 2 logK)

and increasing along the interval (2 logK,∞). Therefore, if p∗ ≥ 2 logK,

R̂(L) ≤
√

2ϑπ√
n
K

1
2 logK

√
2 logK

[
Eg1 |g1|2 logK

] 1
2 logK

Lemma 2
≤

√
2ϑπ√
n
K

1
2 logK

√
2 logK(4 logK)

1
2 + 1

logK

≤
√
eϑπ√
n

(log 4K)1+ 1
2 logK . (4)

If 0 < p∗ ≤ 2 logK, we have

R̂(L) ≤
√

2ϑπ√
n
K

1
p∗
√
p∗
[
Eg1 |g1|p

∗
] 1
p∗

Lemma 2
≤

√
ϑπ√
n
K

1
p∗ (2p∗)1+ 1

p∗ . (5)

Combining (4) and (5) completes the proof.

Proof of Theorem 1. According to the Lemma 3.6 of [6], with probability 1− δ, we have

R(Lr) ≤ R̂(Lr) +

√
2 log(1/δ)R(Lr)

n
.

Note that ∀a, b ≥ 0,
√
ab ≤ a

2 + b
2 . Thus, we have

R(Lr) ≤ R̂(Lr) +
R(Lr)

2
+

log(1/δ)

n
.

So, we can obtain that

R(Lr) ≤ 2R̂(Lr) +
2 log(1/δ)

n
(6)

From the Lemma 2.2 of [11], we know that if ` is a ζ-smooth loss function,

R̂(Lr) ≤ cd
√
ζr log

3
2 (n)R̂(L), (7)

where cd is a constant depends on d. Substituting (7) into (6), we have

R̂(Lr) ≤ 2cd
√
ζr log

3
2 (n)R̂(L) +

2 log(1/δ)

n
. (8)

From Proposition 1, we have

R̂(L) ≤ 1√
n
×

{√
eϑ(4 logK)1+ 1

2 logK , if q ≥ 2 logK,
√
ϑ(2q)1+ 1

q c
1
q , otherwise.

Substituting the above result into (8), the proof is over.

2 Appendix B: Proof of Theorem 2

Theorem 2. If ` is a ζ-smooth loss. Then, ∀h ∈ Hp,κ and ∀k > max(1,
√

2
2d ), with probability 1− δ,

we have

L(h) ≤ max

{
k

k − 1
L̂(`h), L̂(`h) +

cd,ϑ,ζ,kξ
2(K) log3 n

n
+
cδ
n

}
,

where

ξ(K) =

{√
e(4 logK)1+ 1

2 logK , if q ≥ 2 logK,

(2q)1+ 1
qK

1
q , otherwise,

cd,ϑ is a constant depending on d, ϑ, ζ, k, and cδ is a constant depending on δ.
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To prove Theorem 2, we first introduce the following two lemmas.
Lemma 3. Let L̄ be the normalized loss space

L̄ =

{
r

max(L(`2h), r)
`h

∣∣∣`h ∈ L} . (9)

Suppose that ∀k > 1,

Ûn(L̄) := sup
¯̀
h∈L̄

{
L(¯̀

h)− L̂(¯̀
h)
}
≤ r

Mk
.

Then, ∀h ∈ Hp,κ, we have

L(`h) ≤ max

{(
k

k − 1
L̂(`h)

)
,
(
L̂(`h) +

r

Mk

)}
.

Proof. Note that, ∀¯̀
h ∈ L̄:

L(¯̀
h) ≤ L̂n(¯̀

h) + Ûn(L̄) ≤ L̂n(¯̀
h) +

r

Mk
. (10)

Let us consider the two cases:

1) L(`2h) ≤ r, `h ∈ L.

2) L(`2h) > r, `h ∈ L.

In the first case ¯̀
h = `h, by (10), we have

L(`h) = L(¯̀
h) ≤ L̂n(¯̀

h) +
r

Mk
= L̂(`h) +

r

Mk
. (11)

In the second case, ¯̀
h = r

L(`2h)
`h, then

L(`h)− L̂(`h) ≤ Ûn(L) =
L(`2h)

r
Ûn(L̄) ≤ M · L(`h)

r

r

Mk
=
L(`h)

k
. (12)

By combining the results of Eqs (11) and (12), the proof is over.

Lemma 4. Suppose that L̄ is defined in Equation (9) in the paper, then

L̄ ⊆ Lr.

Proof. Let us consider Lr in the two cases:

1) L(`2h) ≤ r, `h ∈ L.

2) L(`2h) > r, `h ∈ L.

In the first case, ¯̀
h = `h and then:

L(`2h) = L(¯̀2
h) ≤ r.

In the second case, L(`2h) > r, so we have that

¯̀
h =

[
r

L(`2h)

]
`h,

r

L(`2h)
≤ 1,

and the following bound holds:

L(¯̀2
h) =

[
r

L(`2h)

]2

L(`2h) ≤
[

r

L(`2h)

]
L(`2h) = r.

Thus, the lemma is proved.

Lemma 5. ψ(r) = R(Lr) is a sub-root function.
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Proof. In order to prove this lemma, we can show the following: 1) ψn(r) is positive; 2) ψn(r) is
non-decrasing; 3) ψn(r)/

√
r is non-increasing.

By the definition ofR(Lr), it is easy to verity thatR(Lr) is positive.

Concerning the second property, we have that, for 0 ≤ r1 ≤ r2: Lr1 ⊆ Lr2 , therefore

ψ(r1) = ES,σ

[
sup

`h∈Lr1

2

n

n∑
i=1

σi`h(zi)

]

≤ ES,σ

[
sup

`h∈Lr2

2

n

n∑
i=1

σi`h(zi)

]
= ψ(r2).

Finally, concerning the third property, for 0 ≤ r1 ≤ r2, let

`hr2 = arg sup
`h∈Lr2

ES,σ

[
sup

`h∈Lr2

2

n

n∑
i=1

σi`h(zi)

]
.

Note that, since r1
r2
≤ 1, we have that

√
r1
r2
`hr2 ∈ Lr2 . Consequently: L

[(√
r1
r2
`hr2

)]2
=

r1
r2
L
[
(`hr2 )2

]
≤ r1. Thus, we have that:

ψ(r1) = ES,σ

[
sup

`h∈Lr1

2

n

n∑
i=1

σi`h(zi)

]

≥ ES,σ

[
2

n

n∑
i=1

σi

√
r1

r2
`hr2 (zi)

]

=

√
r1

r2
ES,σ

[
sup

`h∈Lr2

2

n

n∑
i=1

σi`h(zi)

]
=

√
r1

r2
ψ(r2),

which allows proving the claim since ψ(r2)√
r2
≤ ψ(r1)√

r1
.

Proposition 2. Let us consider a sub-root function ψ(r), with fixed point r∗, and suppose that
∀r > r∗,

R(Lr) ≤ ψ(r). (13)

Then, ∀h ∈ Hp,κ and ∀k > max(1,
√

2
2M ), with probability 1− δ, we have,

L(`h) ≤ max

{
k

k − 1
L̂(`h), L̂(`h) + cMr

∗ +
cδ
n

}
,

where cM = 18Mk, cδ = (12k+14) log(1/δ)
3

Proof. From the Theorem 2.1 of [1], we have

Û(L̄) = sup
¯̀
h∈L̄

{
L(¯̀

h)− L̂(¯̀
h)
}

≤ inf
α>0

(
2(1 + α)R(L̄) +

√
2r log(1/δ)

n

+M

(
1

3
+

1

α

)
log(1/δ)

n

)
Lemma 4
≤ inf

α>0

(
2(1 + α)R(Lr) +

√
2r log(1/δ)

n

+M

(
1

3
+

1

α

)
log(1/δ)

n

)
(13), set α = 1

2

≤ 3ψ(r) +

√
2r log(1/δ)

n
+

7M log(1/δ)

3n

sub-root
≤ 3

√
rr∗ +

√
2r log(1/δ)

n
+

7M log(1/δ)

3n
.
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The next step of the proof consists in showing that r can be chosen, such that Û(L̄) ≤ r
Mk and

r ≥ r∗, so that we can exploit Lemma 3 and conclude the proof. For this purpose, we set

A = 3
√
r∗ +

√
2 log(1/δ)

n
,B =

7M log(1/δ)

3n
.

Thus, we have to find the solution of

A
√
r +B =

r

Mk
,

which is

r =

[(
2B
kM +A2

)
+

√(
2B
kM +A2

)2 − 4B2

M2k2

]
2

M2k2

. (14)

Since k ≥ max(1,
√

2
2M ), k2M2 ≥ 1

2 . Therefore, from (14), we have

r ≥ A2M2k2 ≥ A2

2
= r∗, r ≤ A2M2k2 + 2BMk.

Thus, we have

r

Mk
≤ A2Mk + 2B

=
(

3
√
r∗ +

√
2 log(1/δ)/n

)2

Mk +
14M log(1/δ)

3n
.

Note that, ∀a, b > 0, (a+ b)2 ≤ 2a2 + 2b2, so we have that

r

Mk
≤ 18Mkr∗ +

(12k + 14) log(1/δ)

3n

By substituting the above inequality into Lemma 3, the proof is over.

Proof of Theorem 2. From Proposition 2, with probability 1− δ, we have

L(`h) ≤ max

{
k

k − 1
L̂(`h), L̂(`h) + cdr

∗ +
cδ
n

}
, (15)

where r∗ is a fixed point ofR(Lr). From Lemma 2, we know that theR(Lr) is a sub-root function,
so the fixed point r∗ ofR(Lr) is uniquely exists.

According to Theorem 1, we know that

R(Lr) ≤ cd,ϑξ(K)
√
ζr log

3
2 (n)√

n
+

4 log(1/δ)

n
.

Thus, if we set A =
cd,ϑξ(K)

√
ζ log

3
2 (n)√

n
, B = 4 log(1/δ)

n , the fixed point r∗ is smaller than the solution
of A
√
r +B = r, which is

rs =
2B +A2 +

√
(2B +A2)2 − 4B2

2

≤ 2B +A2 =
c2d,ϑξ

2(K)ζ log3(n)

n
+

4 log(1/δ)

n
.

Substituting the above inequality into (15) finishes the proof.
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3 Appendix C: Proof of Theorem 3

Theorem 3. Let ν =
[
‖θθθ1‖ − βr1, . . . , ‖θθθM‖ − βrM

]
, then the component m-th of ∇Ω∗(θθθ) is

sgn(νm)θθθm
α‖θθθm‖

|νm|q−1

‖ν‖q−2
q

,

where sgn(x) is defined as sgn(x) = 1, if x > 0, sgn(x) = −1, if x < 0, sgn(x) ∈ [−1,+1], if
x = 0.
Lemma 6. Let p ∈ (1, 2] and q = p/(p− 1), and then the norms ‖ccc‖p and ‖ccc∗‖q are dual to each
other. Define the mapping f :M→M with

c∗i = fi(ccc) = ∇i
(1

2
‖ccc‖2p

)
=
sng(ci)|ci|p−1

‖ccc‖p−2
p

, i = 1, . . . , n,

and the inverse mapping f−1 with

ci = f−1
i (ccc∗) = ∇i

(1

2
‖ccc∗‖2q

)
=
sng(c∗i )|c∗i |q−1

‖ccc∗‖q−2
q

, i = 1, . . . , n,

These mapping are often called link functions in machine learning (e.g., [3]).
Lemma 7. For `1-regularization, there is a scalar minimization problem

min
w∈R

ηtw + λt|w|+
γt
2
w2,

And an optimal solution w∗ can be summarized as

w∗ =


0 if |ηt| ≤ λt,

− 1

γt
(ηt − λtsgn(ηt)) otherwise.

Proof. The minimization problem is an unconstrained nonsmooth optimization problem. Its opti-
mality condition [9] states that w∗ is an optimal solution if and only if there exists ξ ∈ ∂|w∗| such
that

ηt + λtξ + γtw
∗ = 0.

There are more discussions in Appendix A of [13]. Finally, we can get the closed-form for `1-
regularization.

Proof of Theorem 3. According to standard Legendre-Fenchel duality, we can get

∇Ω∗(θθθ) = arg max
w

w · θθθ − Ω(w)

= arg max
w

w · θθθ − α

2
‖w‖22,p − βµµµ · rrr.

To reach the above argmax, the derivative of argmax should be zero, so w must be proportional to
θθθ. As in UFO-MKL [7], we explicitly give a tricky link function wm = µmθθθm for different kernels.
By this explicit link function, the algorithm can update both w and µµµ by ∇Ω∗(θθθ). Then, for the
convenience of computation, we focus on cm = µm‖θθθm‖, rewriting the argmax:

arg min
ccc

(βr− a) · ccc+
α

2
‖ccc‖2p (16)

where a =
[
‖θθθ1‖, . . . , ‖θθθM‖

]
.

The optimality condition of the above minimization problem [9] states that ccc∗ is an optimal solution
of (16). And we set the derivative of above argmin being zero

βr− a + αccc∗ = 0 (17)
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And then we can get ccc∗ = 1
α

(
a− βr

)
. Following similar arguments of Lemma 6 and Lemma 7, we

find that it has a closed-form solution

cm =f−1(c∗m) = ∇m
(1

2
‖c∗m‖2q

)
=

sgn(c∗m)|c∗m|q−1

α‖ccc∗‖q−2
q

.

Let ν =
[
‖θθθ1‖ − βr1, . . . , ‖θθθM‖ − βrM

]
, and use µm = cm/‖θθθm‖ and wm = µmθθθm, We can get

µm =
sgn(νm)|νm|q−1

α‖θθθm‖‖ν‖q−2
q

, wm =
sgn(νm)θθθm|νm|q−1

α‖θθθm‖‖ν‖q−2
q

.

Similar argmax has been analysis in Section 7.2 of [13].

4 Appendix D: Convergence Analysis

4.1 Conv-MKL

Convergence rate of the proposed Conv-MKL is decided by which `p MC-MKL algorithm it uses. In
experiments, we following implement Conv-MKL based on UFO-MKL [7]. Thus, convergence rate of
Conv-MKL is same with UFO-MKL in Section 4.1 of [7].

4.2 SMSD-MKL

Denote by zt = ∂`(w, φµ(xt), yt), we now state the convergence therem for any loss function that
satisfies the following hypothesis

‖zm‖ ≤ L‖φm(·)‖2,∀t = 1, . . . ,M. (18)

Theorem 4. Denote by

f(w) = Ω(w) +
1

n

n∑
i=1

`(w, φµ(xi), yi)

and by w∗ the solution. Suppose that ‖φm(·)‖2 ≤ 1, and the loss function ` satisfies (18). Let
δ ∈ (0, 1), then with probability at least 1− δ over the choices of the random samples we have that
after T iterations of the SMSD-MKL algorithm

f(wT+1)− f(w∗) ≤ eL2(1 + log T ) logM

αδT
,

where e is the Euler’s number.

Proof. Using (18) and ‖φm(·)‖2 ≤ 1, we have

‖∂(wt, φµ(xt), yt)‖2,q
≤ LM1/q max

j=1,...,M
‖φm(xt)‖2 ≤ LF 1/q

The function Ω(w) = α
2 ‖w‖

2
2,p + βµ · r is α-strongly convex w.r.t. the norm ‖ · ‖2,q . Hence, using

according to Theorem 1 in [10], using η = 1 and g = Ω, and using Markov inequality as in [10] we
prove the stated result.
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