Appendix: Multi-Class Learning: From Theory to
Algorithm

1 Appendix A : Proof of Theorem ]|
Theorem 1. With probability at least 1 — 6, we have

ca0€(K)VCrlog? (n) | 4log(1/9)

R(L") < N —

where

£(K) = Ve(dlog K)Hmew | ifg > 2log K,
(2q)1+% Ko, otherwise,

cd, is a constant depends on d and 9.

To prove theorem [T} we first introduce the following two lemmas.

Lemma 1. [5] Suppose that L is defined in equation (2) in the paper, then we have

R 77( n K
R(L) < —Eg sup Z Zg(j—l)n+ihj (%),

n h:(hlwnth)e’Hp,m i=1 j:1

where g1, . .., gnk are independent N (0, 1) random variables.

Proof. The empirical Gaussian complexities of H,, .. is denote as

5 1 <
G(Hpx) =Eg | sup — > gih(x;)|,
(Hpe) =By | sup 3 ()
where g1, . . ., g, are independent N (0, 1) random variables. For any v > 0, let p,, ,(x,y) be

prn(X,y) = hi(x, ) — max((x,y') — 71—,
y' ey

= min [h(x,y) — h(x,9') + 71y =]
y' ey

It is easy to checked that p., ,(x,y) = min(pp(x,y),y). For the fixed parameter v = ¢,, we observe
that p,, 5 (x,y) = min(pn(x,y), ce). If pr(x,y) > ¢/, we get

U(pyn(x,y)) = ce) = 0= Lpn(x,9))-

Thus, we have p,, (%, y) = pn(%,y). Therefore, for any z = (x,y) € Z we have {(p, 1(x,y)) =
((pn(x, ), and

Ly :={pyn(x,y):heMH,.} =L

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.



Thus, £, satisfies the following inequality:
R(L) = R(L,)

n

1
= EEU ;Ui (h(xmyi) - ?Ea;f(h(xmyi) - W’ly—yi)>

IN

1 - 1
—Es ih(X;, y; —Eo»
an St +

n heHp x |21

n
su o; max(h(x;, y;) — v1ly—=y,
he?—tr,,)w; ler( (Xi,9i) — y yq)]

=R(Hpx) +Eo

1 n
sup — oimax(h(x;, yi) — Yly=y,
heﬂgﬁn; lyEY( ( % yz) Ty y)]

R(Hy ) < \Eémp,a.

According to the Lemma 4 of [5]], we have

From [4], we know that

n K
1
GHpr) < 1 Fg SUp DY gG-nmrih(xi)

h=(h1,....hk)€EH ;3 j=1

Thus, we have

n K
R(L) < % gEg h=(hljs.?,1i):,K)eH ; ; 9G—yn+ily(xi)+
1 |«
n\/g]Eg [g; max(h1 (x;) — Yly,=1, ..., he(xi) — Y1y=c)] -
=As
In the next, we bound As:
n K
Az < Eq sup Z Zg(j—l)nﬂ‘ (hj(x:i) — v1y=c)

h=(h1,....,hx)EHp, « i=1 j=1

n

K n K
= Eq sup SN gG-vnri (i (%) —Eg > > gG-1ynrivlyi=j

h=(h1,...hx)€Hpr =1 j—1 i=1 j=1

=0

n K
=Ey sup Zzg(j—l)n+i (hj(xi)) -

h=(h1 b ) EHp . i1 51

With this inequality, we immediately derive the following bound on ﬁ(ﬁ):

. /727_(_ n K
R(L) < —Eg sup ZZg(j_l)n+ihj(x,;).

n h=(h1,....hi)E€H ;27 54

O

Lemma 2. [5] Let g be N(0, 1) distributed. For any p > 0, the p-th moment of g can be bounded by

1 1,1
[Elg|"]» < (2p)= 7.

(M

Proof. Let I'(n) = (n — 1)! be the Gamma function. The p-th moment of a N (0, 1) distributed

random variable can be exactly expressed via Gamma function [12]:

2o (e2) < 225

=

[Eg|g|p]




According to the Stirling’s approximation in [8], we can obtain that

ot < 22 [2])

Stirling’s approximation 9 k4

< f\/%[p_l

T 2
< (2p)%*.
O
Proposition 1. [5]] Suppose that L is defined in equation (2) in the paper, then we have
R e e(dlog K)'Tzme®w | ifp* > 2log K,
R(£)<£x f(HiL if p g
Vvn (2p™) TP KT, otherwise.
Proof. From Lemma|T]} we know that
R \/ﬂ n K
R(L) < —E sup 9G—1n+ihy(Xi), (2)
2:A1
where g1, ..., gnk are independent N (0, 1) random variables. In the next, we will bound A4;. To
this end, we denote by || - ||« dual norm of || - ||, i.e.,
Jwlls == sup (w,w’).
lw’[I<1

For a convex function f, we denote by f* its Fenchel conjugate, i.e.,
f () :=sup [{w,v) — f(w)].

From Corollary 4 in [2], we know that, if f is n-strongly convex w.r.t || - || and f*(0) = 0, then for
any sequence v, . . ., v, and for any p we have

n

S i) = F0) < SAVE (i)} + 50 3 Il
=1 i=1

i=1

where v;.; denotes the sum 22:1 v;. Let g be any number satisfying p < g < 2. Introduce the

function f,(w) = 3|lwl|3 . It is easy to verify that

fo(w) =
Since f,(w) is q%—strongly convex W.I.t || - ||2,4+. Let

Vi = (gi¢(xi>7 gn+i¢(xi)7 s 7g(K—1)n+i¢(xi))>
w=(wi,...,wg),

we can obtain that

A sup Z Z g(j_1)n+i<Wj, (%))

h€Han ;=1 721

= sup Z((Wl, . ,WK), )\l/i>

he€Hq x 123
n

. n q*>\2
< sup fo(w)+ 0 i) ) + D0 Ll
=1

heHy, =



Taking expectation on both sides w.r.t. g1, ..., gnx, We can obtain that

Eg sup ZZQ(J 1)n+i (Wj, ¢(xi))

heHa w327 j=1
q
+Z—|l vill3,4-

IA
~
+
<
Q
L[]
<
5

2)

1 q*>\ n )
oy ; [ill2,q--

L the above inequality translates to

N AT
g sup Zzgg 1)n+i W]7¢(X’L)>

heHqn 123 =1

Choosing A =

n
< e Il
=1
< g ZE 1(9i6(1)s - -+ 9 —1yms i ()3 g

Z:Az

In the next, we bound As:

n i K q%
A= Eg [ 9G-1mid(xi)ll3
i=1 | i=1
2
n [ K a
= ZE Z j 1) n+z k(xiaxi)
=1 j=1

2
F

K n
symmetry *
=" Eg [ D gl > k(xi, %)
j=1 i—1

2

QZL%“] Zk(xi,xi)
i=1
l*
q*} ‘ ;k(xi,xi)

2
<Kw [Egl\gl\"*} " na.

Jensen’s Inequahty

= [KEgllgl

Substituting the above inequality in (10) in the paper, we have
K

IEg sup Zzg(j—l)n+1<wja A¢(X1)> < -[((7\/(?k [Eg1|gl

hGHq,R i=1 j=1

From the trivial inequality |w
equation and (9) in the paper, we have

N . v 207
R(L) < inf, fK \f{gllgl

i

" V.

3)

2.p > ||Wl|2.q, we know that H,, ,, C H, .. Combining the above
sP sq 12 q,



It can be directly checked that the function ¢ — /tc!/* is decreasing along the interval (0, 2log K)

and increasing along the interval (2log K, 0o). Therefore, if p* > 2log K,

- 219 1 1
R(L)S \/\/?Km%r}( 210gK[Eg1‘g1‘210gK]210gK
me 2 /29
emma fWKQIOgK 210gK(410gK) +logK
< m(logélf()“‘ﬁ,

. 29 W1 pF
R(L) < ¥ K Bl |
Lemma. \/1977 p ( )1+z%*

Combining (@) and (3)) completes the proof.
Proof of Theorem([I] According to the Lemma 3.6 of [6], with probability 1 — ¢, we have
A 2log(1/6)R(L"
Rie) < R(er) ¢ LEUIRED

n
Note that Va,b > 0, vab < 5+ g Thus, we have

R(LT) n log(1/4)
2 n

R(L) < R(L™) +

So, we can obtain that
N 2log(1/6
R(LT) < 2R (L") + 208U/0)
n
From the Lemma 2.2 of [[L1]], we know that if ¢ is a (-smooth loss function,

R(LT) < ca/Cr 1og%(n)7€ L
where ¢ is a constant depends on d. Substituting (7) into (6)), we have
. 2log(1/d
£T < 2¢44/C log n)R(L M.
n
From Proposition[I} we have
R 1 Ved(dlog K)'"F7esr | if g > 2log K,
R(‘C) < —=X +1 1
Vi | Vi(g) e,

Substituting the above result into (8), the proof is over.

otherwise.

2 Appendix B: Proof of Theorem 2]

“4)

(&)

(6)

(7

(®)

Theorem 2. If ¢ is a (-smooth loss. Then, Vh € Hp, .. and Vk > max(1, ‘2/;) with probability 1 —

we have

2 3
L(h) < max {kflL(éh),L(éh) + ca,¢,kE"(K)log” n N 05} 7

n n

where
¢(K) = Ve(dlog K)'*omer | ifg > 2log K,
(2q)1+% K%, otherwise,

cd,s 1s a constant depending on d, 9, (, k, and cs is a constant depending on 6.



To prove Theorem 2] we first introduce the following two lemmas.

Lemma 3. Let L be the normalized loss space

. r
L= {Mwh € c}

Suppose that Vk > 1,

Then, Vh € H,, ., we have

p(6) < max { (2200 ) (E6) + 577) |

Proof. Note that, Ve, € L:

Let us consider the two cases:

1) L( )<T£h€£
2) L(63) > r, by € L.

In the first case ¢;, = £5,, by (I0), we have
r ~
L(tn) = L) < Lo(ln) + v = L) + 577

In the second case, ¢;, = ¢, then

L(Z2

L(£3)

L(tw) = B(t) < Un(2) = 2 g7y < M LUER) T

By combining the results of Eqs (T1)) and (12)), the proof is over.

Lemma 4. Suppose that L is defined in Equation @) in the paper, then
LCL
Proof. Let us consider L” in the two cases:
1) L(3) <r ly €L
2) L(62) > r, by € L.

In the first case, 5, = ¢}, and then:
L(6z) = L(6) <.

In the second case, L(¢2) > r, so we have that

= T
Kh |: :| éh, S 1a
L(Z)| " L@)
and the following bound holds:

L) = [L&%)]QW%L) < [L(Zi)] L&) =

Thus, the lemma is proved.

Lemma 5. ¢(r) = R(L") is a sub-root function.

(©))

(10)

(1)

12)



Proof. In order to prove this lemma, we can show the following: 1) v, (r) is positive; 2) 1, (r) is
non-decrasing; 3) 1, (r)/+/T is non-increasing.

By the definition of R(L"), it is easy to verity that R(L") is positive.
Concerning the second property, we have that, for 0 <y < rg: L™ C L7 therefore

sup ngh (2 ]

theLr 1 i=1

sup ngh Zi ] = 1(ra).

lpeLrz N

7/)(7“1) = ES,O’

< ES,O’

Finally, concerning the third property, for 0 < r; § T2, let

sup Zalﬂh 2 ] .

by = argsupEgs o

LhELT2 lpeLrz N

2
Note that, since :—; < 1, we have that %fhrz € L. Consequently: L [( T,Qfmz)] =
=L [(€nr2)?] < r1. Thus, we have that:

r1)=Eso | su ol (2
¥(r1) = Es, Py Z h ]
> ]ES,U Z O-” / E}LTQ Zz)]

1 1
=,/—E su E oiln(z:)| =/ —¥(re),
ry O zhe}:)w n ih(z ] Tzw( 2)

P(ra) 1/1(7‘1)
which allows proving the claim since NG < i O
Proposition 2. Let us consider a sub-root function 1 (r), with fixed point r*, and suppose that
Yr > r*,
R(L") <9(r). (13)

Then, Yh € H, . and Vi > max(1, iM) with probability 1 — §, we have,
k- -
L(¢h) < max {k_lL(fh% L(p) 4+ cur™ + T‘Z} ’
where cy; = 18 Mk, c5 = w

Proof. From the Theorem 2.1 of [1]], we have
O(£) = sup {L(8) — L(E) }
el
~ 2rlog(1
< inf (201 +Q)R(L) + 2rlog(1/9)
a>0 n
1 1\ log(1/6
3 « n

Lemmal[d]

< él;fo (2(1 +a)R(L) +

1 1Y log(1/9)
+M<3+a>n)
@), Selga =3 30(r) + 2r loi(l/(S) n ™ l(;i(l/é)

sub root SV 4 2rlogn(1/(5) N 7M1(;i(1/5).

2rlog(1/9)




The next step of the proof consists in showing that r can be chosen, such that U(ﬁ_) < 3% and
7 > r*, so that we can exploit Lemma [3]and conclude the proof. For this purpose, we set

- 210gT(Ll/5)’B: 7M1§i(1/5).

Thus, we have to find the solution of

,
AVi+B=—
N i

which is

2B 4B2
[ 2B 4 A7) (28 + 42)" - g
r= . (14
M2/€2

Since k > max(1, ¥2), k2M? > 1. Therefore, from (T4), we have
A2
r> A2M?E? > 5 = r*,r < A2M?k* + 2BME.
Thus, we have
T
— < A’Mk + 2B
ME — +

| 14Mlog(1/)

_ (3\/7 n 210g(1/6)/n>2Mk: o

Note that, Va, b > 0, (a + b)? < 2a? + 2b?, so we have that

. (12k—|— 14)log(1/9)
— < 18M
Mk 8Mkr 3n

By substituting the above inequality into Lemma 3] the proof is over. O

Proof of Theorem[Z] From Proposition 2} with probability 1 — &, we have
k ~ A % Cs
L) < max § o—=L(ln), L) +car™ + o, (15)

where 7* is a fixed point of R(L"). From Lemmal[2} we know that the R(L") is a sub-root function,
so the fixed point 7* of R(L") is uniquely exists.

According to Theorem|T] we know that

ca,0€(K)V/Crlog? (n) | 41og(1/5)
Vi no

Thus, if we set A = —c’i’ﬂg(K)flog%(") , B = 41oe1/d)
of A\/r + B = r, which is

R(L") <

, the fixed point 7* is smaller than the solution

2B + A%+ /(2B + A2)? — 4B2

ré =
2
2 E2(K)Clog?(n 41og(1/8
o a2 GRS () | 10g(1/0)
n n
Substituting the above inequality into (T3) finishes the proof. O



3 Appendix C: Proof of Theorem 3|

Theorem 3. Letv = [||01|| —Bri, .. 106l — BTM} , then the component m-th of V§*(0) is
Sgn(ym)am |Vm|q71
) 7 P

where sgn(x) is defined as sgn(z) = 1, if ¢ > 0, sgn(z) = —1, ifx < 0, sgn(z) € [-1,41], if
z=0.

Lemma 6. Let p € (1,2] and g = p/(p — 1), and then the norms ||c||, and ||c*|| 4 are dual to each
other. Define the mapping f : M — M with

. 1 sng(c)|e Pt .
¢ = ) = Vi(Le2) = A iy,

)
llell
and the inverse mapping {~! with
sng(c;)lef|e™

1
e = 7€) = Vi(5llell;) = TR — i = L,

=)
lle= 113

These mapping are often called /ink functions in machine learning (e.g., [3]).

Lemma 7. For {1-regularization, there is a scalar minimization problem

. Tt o2
min W + \¢|w| + —w
weR K t| I + 2 ’
And an optimal solution w* can be summarized as
0 ifnel < Ae,

1
— — (g — Mesgn(ny))  otherwise.
Vi

Proof. The minimization problem is an unconstrained nonsmooth optimization problem. Its opti-
mality condition [9] states that w* is an optimal solution if and only if there exists £ € J|w*| such
that

ne+ M+ 7w =0.
There are more discussions in Appendix A of [13]. Finally, we can get the closed-form for ¢;-
regularization. O
Proof of Theorem 3] According to standard Legendre-Fenchel duality, we can get
VQ*(0) = argmaxw - 0 — Q(w)

= argmaxw -0 — g||w||§ — B -r.
w 2 P

To reach the above argmax, the derivative of argmax should be zero, so w must be proportional to
0. As in UFO-MKL [[7], we explicitly give a tricky link function w,,, = pi,,,0,, for different kernels.
By this explicit link function, the algorithm can update both w and g by VQ*(6). Then, for the
convenience of computation, we focus on ¢,;, = (i, ||0y, ||, rewriting the argmax:

argmin(fr —a) ¢+ %HCH;% (16)
c

where a = [||01||, cees ||0M||]

The optimality condition of the above minimization problem [9] states that ¢* is an optimal solution
of (TI6). And we set the derivative of above argmin being zero

Br—a+ac* =0 17



1
a

find that it has a closed-form solution

— * 1 *
em =F 71 (ehn) = Vim(5lleml2) =

And then we can get ¢* = (a — Br). Following similar arguments of LemmaHand Lemma we

sgn(cp,)les, 17

)
aller|g
Letv = [||01|| —Bry, .. |10um| — 61‘1\4], and use iy, = ¢ /|0 and W, = 1,65, We can get
sgn (V) [vm| ! SN (Vi )8 [V |7
p— W =

m T q_27 m

-2
allfn vl al|m|ll|v 13

Similar argmax has been analysis in Section 7.2 of [13]. O

4 Appendix D: Convergence Analysis

4.1 Conv-MKL

Convergence rate of the proposed Conv-MKL is decided by which £, MC-MKL algorithm it uses. In
experiments, we following implement Conv-MKL based on UFO-MKL [7]. Thus, convergence rate of
Conv-MKL is same with UFO-MKL in Section 4.1 of [7]].

4.2 SMSD-MKL

Denote by 2 = 9¢(w, ¢, (x"), y"), we now state the convergence therem for any loss function that
satisfies the following hypothesis

[zmll < Lli¢m ()2, YVt =1,..., M. (18)
Theorem 4. Denote by

Fw) = 9w) + > . 600, 1)

and by w* the solution. Suppose that ||¢n,(-)||2 < 1, and the loss function { satisfies (I8). Let
6 € (0, 1), then with probability at least 1 — 0 over the choices of the random samples we have that
after T iterations of the SMSD-MKL algorithm
eL?(1+1ogT)log M

adT ’

FwTHh) = f(w") <

where e is the Euler’s number.

Proof. Using (18) and ||¢,,(+)||2 < 1, we have

1(w", ¢ (x"), ) |24

< LMY% max ||¢ (x| < LFY1
j=1,....M

The function Q(w) = §||w||3, + B - r is a-strongly convex w.r.t. the norm | - [|2,,. Hence, using

according to Theorem 1 in [10], using n = 1 and g = €2, and using Markov inequality as in [10] we
prove the stated result.
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