Deconvolving Feedback Loops in Recommender Systems

Part of Advances in Neural Information Processing Systems 29 (NIPS 2016)

Bibtex Metadata Paper Reviews Supplemental


Ayan Sinha, David F. Gleich, Karthik Ramani


Collaborative filtering is a popular technique to infer users' preferences on new content based on the collective information of all users preferences. Recommender systems then use this information to make personalized suggestions to users. When users accept these recommendations it creates a feedback loop in the recommender system, and these loops iteratively influence the collaborative filtering algorithm's predictions over time. We investigate whether it is possible to identify items affected by these feedback loops. We state sufficient assumptions to deconvolve the feedback loops while keeping the inverse solution tractable. We furthermore develop a metric to unravel the recommender system's influence on the entire user-item rating matrix. We use this metric on synthetic and real-world datasets to (1) identify the extent to which the recommender system affects the final rating matrix, (2) rank frequently recommended items, and (3) distinguish whether a user's rated item was recommended or an intrinsic preference. Our results indicate that it is possible to recover the ratings matrix of intrinsic user preferences using a single snapshot of the ratings matrix without any temporal information.