
Supplementary Material for Deconvolving Feedback
Loops in Recommender Systems

Ayan Sinha
Purdue University
sinhayan@mit.edu

David F. Gleich
Purdue University

dgleich@purdue.edu

Karthik Ramani
Purdue University
ramani@purdue.edu

This document serves as supplementary material to the paper: Deconvolving Feedback Loops in
Recommender Systems.

1 Theorem and proof on deconvolving feedback loops

In this section, we prove equation 6 in the manuscript and provide a proof of the main theorem.
Equation 6 in the paper is:

R̂obs = R̂true(I + f1(α)R̂T
trueR̂true + f2(α)(R̂T

trueR̂true)2 + f3(α)(R̂T
trueR̂true)3 + · · ·) (1)

Proof We use induction to first prove that:

R̂k+1
obs = R̂true(I + αkStrue(I + αk−1Strue · · · (I + α2Strue(I + α1Strue)3)3 · · ·)3) (2)

Using assumptions 1,2, and 3, in the main manuscript we have:

R̂2
obs = R̂true + α1(R̂1

obsS1)

= R̂true + α1(R̂trueStrue)

= R̂true(I + α1Strue).

(3)

Here, R̂2
obs is the centered and normalized observed matrix after the first iteration, and R̂true is the

matrix of true preferences which we wish to recover. We have used the initial conditions R1
obs = Rtrue,

S1 = Strue. For the second iteration, we have:

R̂3
obs = R̂true + α2(R̂2

obsS2)

= R̂true + α2(R̂2
obs(R̂2

obs)
T R̂2

obs)

= R̂true + α2(R̂true(I + α1Strue)(I + α1Strue)R̂T
trueR̂true(I + α1Strue))

= R̂true(I + α2((I + α1Strue)2Strue(I + α1Strue))

= R̂true(I + α2Strue(I + α1Strue)3).

(4)

We have used the adjusted cosine similarity relationships, S2 = (R̂2
obs)

T R̂2
obs,Strue = (R̂true)T R̂true,

the property of matrix transpose (AB)T = BT AT , and the property that Strue is symmetric, i.e.,
Strue = ST

true.

The base cases are now proved in equations 3, 4. Considering equation 2 to be true at the kth iteration,
we wish to prove the following at the (k + 1)th iteration:

R̂k+2
obs = R̂true(I + αk+1Strue(I + αkStrue(I + αk−1Strue · · · (I + α2Strue(I + α1Strue)3)3 · · ·)3)3) (5)

Using assumptions 1, 2 and 3 we have the following relationship:

R̂k+2
obs = R̂true + αk+1(R̂k+1

obs Sk+1). (6)

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

We also have the adjusted cosine similarity relationship, Sk+1 = (R̂k+1
obs)T R̂k+1

obs . Substituting this
relation in equation 6, we have:

R̂k+2
obs = R̂true + αk+1(R̂k+1

obs (R̂k+1
obs)T R̂k+1

obs). (7)

We substitute equation 2 in equation 7, and represent the matrix (I + αkStrue(I + αk−1Strue · · · (I +
α2Strue(I + α1Strue)3)3 · · ·)3) as M. Matrix M is symmetric, so we have M = MT . As, R̂T

trueR̂true =
Strue, we get:

R̂k+2
obs = R̂true + αk+1(R̂trueM2R̂T

trueR̂true M)

= R̂true + αk+1(R̂trueM2Strue M)
(8)

Furthermore, matrices M and Strue have the same set of eigenvectors, and hence, we have:

R̂k+2
obs = R̂true + αk+1(R̂trueStrue)M3

= R̂true(I + αk+1Strue M3)
(9)

Substituting back for M, we get equation 5, completing the proof of equation 2 using induction. It is
easy to verify that the maximum exponent of Strue in R̂k+1

obs grows exponentially as 3k−1, and we have
the full set of powers of Strue. So even for a small number of iterations, we have an large number of
terms in equation 2. As a result, if we expand equation 2 for a large number of iterations k → ∞, we
get the infinite series:

R̂obs = R̂true(I + f1(a1)Strue + f2(a2)(Strue)2 + f3(a3)(Strue)3 + . . .)

= R̂true(I + f1(a1)R̂T
trueR̂true + f2(a2)(R̂T

trueR̂true)2 + f3(a3)(R̂T
trueR̂true)3 + . . .)

(10)

Here, we replaced R̂k+1
obs with the observed ratings matrix, R̂obs after a large number of iterations.

Also, f1, f2, f3 . . . are functions of the probability parameters ak = [α1, α2, . . . αk, . . .] of the form
fz(az) = cαc1

1 α
c2
1 · · ·α

ck
k · · · , where c is a constant. Also, as all αk’s appear as a multiplicative factor

to Strue, we have
∑

k ck = z in fz(az). This completes our proof. �

The governing expression of our simplified recommender as stated in the main manuscript is:

R̂obs = R̂true(I + αR̂T
trueR̂true + α

2(R̂T
trueR̂true)2 + α3(R̂T

trueR̂true)3 + · · ·) (11)

We discuss the mechanism of solving equation 11 using the set of five assumptions in the main
manuscript as a theorem.
Theorem 1 Assuming the recommender system follows (11) and the singular value decomposition
of the observed rating matrix is, R̂obs = UΣobsVT , the deconvolved matrix Rtrue of true ratings is
given as UΣtrueVT , where the Σtrue is a diagonal matrix with elements:

σtrue
i =

−1
2ασobs

i

+

√
1

4α2(σobs
i)2

+
1
α

(12)

where α is between 0 and 1.

Proof Both U,V are orthogonal matrices of dimension m ×m, and n × n, respectively and Σtrue is a
non-negative diagonal matrix of singular values. Then, the eigenvalue decomposition of S is given
as:

S = R̂T R̂ = (UΣtrueVT)T UΣtrueVT = VΣ2
trueVT . (13)

Using assumption 5 and applying the Taylor series summation in equation 11, we have:

R̂obs = R̂true(I − αS)−1. (14)

Note that in order for the series to converge, it is required that α(σtrue)2
i < 1 for all i. Below, we

show that this holds for the choice of σtrue in the theorem. In spectral form, we then have:

(I − αS)−1 = V(I − αΣ2
true)−1VT . (15)

Hence,
R̂obs = UΣtrueVT V(I − αΣ2

true)−1VT = UΣtrue(I − αΣ2
true)−1VT . (16)

2

Let the singular value decomposition of the observed rating matrix R̂obs be:

R̂obs = UΣobsVT . (17)

Using the (16) and (17) we find:

Σobs = Σtrue(I − αΣ2
true)−1 , i.e. σobs

i =
σtrue

i

1 − α(σtrue
i)2 ∀i. (18)

Solving the quadratic in σtrue
i in terms of σobs

i , and considering only the positive value, we get:

σtrue
i =

−1
2ασobs

i

+

√
1

4α2(σobs
i)2

+
1
α

(19)

What remains to show is that this choice of σtrue
i satisfies the convergence assumption in the main

manuscript. This can be inferred through the following inequalities:√
1

4α2(σobs
i)2

+
1
α
<

√
1
α
+

√
1

4α2(σobs
i)2√

1
4α2(σobs

i)2
+

1
α
<

√
1
α
+

1
2ασobs

i

−1
2ασobs

i

+

√
1

4α2(σobs
i)2

+
1
α
<

√
1
α

σtrue
i <

√
1
α

α(σtrue
i)2 < 1

(20)
�

2 Algorithms and codes for deconvolving feedback loops

The overall algorithm to assign a score for the extent of recommendation in a recommender system
is shown below. The matlab code for deconvolving feedback loops is given below. The inputs to the

Algorithm 1 Extract Recommended Ratings
Input: Robs, where Robs is observed ratings matrix
Output: s(Rrecom), Likelihood score that item was suggested by recommender

1: Compute R̂true given Robs using Algorithm 1
2: Plot R̂true vs. R̂obs for the ratings in R̂obs
3: Calculate m, c for R̂obs(:, i) = mR̂true(:, i) + c for each item using RANSAC
4: Translate [R̂true, R̂obs] by c and rotate by π/2 − m to obtain [R̆true, R̆obs] that is approx. parallel to the y-axis.
5: Scale such that max(|R̆true |) = max(|R̆obs |)
6: s(Rrecom)← real

(√
R̆2

true − R̆2
obs

)

algorithm are the observed ratings matrix, Robs and parameter α. The parameter α was set to 1 for
all experiments on real datasets.

function Rdeconv = deconv(Robs,alpha)
% Robs: a mxn matrix of observed ratings
% alpha: parameter controlling the deconvolving of feedback loops
% Rdeconv: a mxn matrix of deconvolved ratings

NR = sum(spones(Robs),2); % Vector of number of ratings of users
Sum_Rat = sum(Robs,2); % Vector of sum of ratings of every user
Avg_Rat = Sum_Rat./NR; % Vector of average rating of each user
Rmean = (sparse(diag(Avg_Rat))*ones(size(Robs))); % Full matrix of average ratings

3

Rmean = Rmean.*(Robs>0); % Sparse matrix of average ratings for rated items
Robs_c = Robs-Rmean; % User centered ratings matrix

item_norms = (sum(Robs_centered.^2)); % Item norms
Robs_cn = Robs_c*sparse(1:length(item_norms),1:length(item_norms),...

1./sqrt(item_norms),length(item_norms),length(item_norms));
% User centered & normalized ratings matrix

[U,Sobs,V] = svd(Robs_cn); %Singular value decomposition

[~,~,singvalobs] = find(Sobs); %singular values
singvaltrue = -1./(2*alpha*singvalobs) + sqrt((1./(4*alpha^2*singvalobs.^2))...

+1/alpha); %transformed values

Strue = sparse(1:size(Robs,2),1:size(Robs,2),singvaltrue,size(Sobs,1),...
size(Sobs,2)); %Deconvolved singular values

Rdeconv = U*Strue*V'; %Deconvolved matrix

end

The matlab implementation for RANSAC adapted from http://en.wikipedia.org/wiki/RANSAC
is given below. We set num = 2, iter = 100, threshDist = 0.1 and inlierRatio = 0.3 in all our
experiments. RANSAC works better than least squares method for line fitting because it implicitly
excludes outliers for line fitting.

function [bestParameter1,bestParameter2] = ransac(data,num,iter,threshDist,inlierRatio)
% data: a 2xn dataset with #n data points
% num: the minimum number of points. For line fitting problem, num=2
% iter: the number of iterations
% threshDist: the threshold of the distances between points and the fitting line
% inlierRatio: the threshold of the number of inliers

number = size(data,2); % Total number of points
bestInNum = 0; % Best fitting line with largest number of inliers
bestParameter1=0;bestParameter2=0; % parameters for best fitting line
for i=1:iter
%% Randomly select 2 points

idx = randperm(number,num); sample = data(:,idx);
%% Compute the distances between all points with the fitting line

kLine = sample(:,2)-sample(:,1);
kLineNorm = kLine/norm(kLine);
normVector = [-kLineNorm(2),kLineNorm(1)];
distance = normVector*(data - repmat(sample(:,1),1,number));

%% Compute the inliers with distances smaller than the threshold
inlierIdx = find(abs(distance)<=threshDist);
inlierNum = length(inlierIdx);

%% Update the number of inliers and fitting model if better model is found
if inlierNum>=round(inlierRatio*number) && inlierNum>bestInNum

bestInNum = inlierNum;
parameter1 = (sample(2,2)-sample(2,1))/(sample(1,2)-sample(1,1));
parameter2 = sample(2,1)-parameter1*sample(1,1);
bestParameter1 = parameter1; bestParameter2 = parameter2;

end
end

3 Validating our assumptions

The synthetic experiment gives us a quick way to validate our assumption. We consider two in-
stances of the synthetic recommender system. The first (case A) is as described in the main
manuscript simulating a real recommender system. In the second (case B), we always derive
the item-item similarity from the users’ true rating matrix according to equation 7 in the main

4

Recommender Iteration
10 20 30 40 50

E
ffe

ct
 L

ev
el

0

0.05

0.1

0.15

0.2

0.25

0.3 Rating difference
User mean difference
Item norm difference

Figure 1: We plot the one-standard deviation distribution of effects on the mean difference in ratings,
user means, and item norms as we run a recommender system using the true ratings matrix to gener-
ate the similarity compared to the observed ratings matrix. This plot shows a minimal effect around
0.2 for item norms, and around 0.05 for rating difference in the worst case due to our approximations
and provides a rough justification for assumptions 3-5 in a synthetic setting.

manuscript. Thus, this experiment quantifies the overall effects of assumptions 3 and 4. We compute
this difference in ratings for a number of different realizations and plot the distribution within one
standard deviation of the mean as one line in Figure 1. For assumption 3 specifically, we compare
the user-means of the ratings matrix of case A to the true user means and the item-norms of the
matrix in case A to the true item norms. Distributions over these differences are the other two lines.
We plot the evolution of these differences for 50 steps of the synthetic recommender system. This
figure shows that the item norms do differ between these two realizations, but their difference is
small enough to make the approximation plausible. Note that the user effects are bounded above by
5, and the item norm effects scale with the number of users. There were 1000 users, so the difference
in item norms is very small compared with the number of users.

4 Real data

We briefly discuss the datasets we used in our experiments below.

Jester. We use two versions of the Jester-joke dataset, one collected between April 1999 - May 2003
and the other between November 2006 - May 2009. These two datasets contain ratings directly
reported by the users without a recommender system interface.

MusicLab. MusicLab experiment was conducted at the Department of Sociology at Columbia Uni-
versity between 2004 and 2007 [3]. The motivation of the experiment was to investigate the in-
fluence of recommendations on the success or failure of a song. In real-time, participants arriving
at the experiment were randomly assigned to one of two experimental conditions (1) weak and (2)
strong social influence, which differed only by the availability of information on the past behavior
of others. Participants chose which songs to listen to based solely on the names of the bands and
their songs in the weak social influence condition, whereas participants could also see how many
times each song was downloaded by previous participants in the strong social influence condition

5

[3]. Thus, these social influence conditions may be thought of as parallel realizations of a system
with a weak-recommender and no-recommender.

MovieLens. MovieLens data sets were collected by the GroupLens Research Project at the Univer-
sity of Minnesota. We use three versions of the data: MovieLens-100K consisting of one hundred
thousand ratings, MovieLens-1M consisting of one million ratings and MovieLens-10M consisting
of 10 million ratings. We gathered from the MovieLens website that Movielens-100K dataset was
released on 4/1998, MovieLens 1M was released on 2/2003 and MovieLens 10M was released on
1/2009. Movielens 10M contains almost all movies in the 100K and 1M dataset. This indicates that
the data corresponds to different snap-shots of the same data obtained at different times of the data
collection process.

Beer, Wine, Food. The beer-rating websites BeerAdvocate and RateBeer allow users to rate beers
using a five-aspect rating system. They also include reviews of pubs. We also consider the wine
review website CellarTracker, and reviews from the Fine Foods. Note that the rating datasets have a
different scale (e.g. beers on RateBeer are rated out of 20, wines on CellarTracker are rated out of
100, etc.).

Netflix. Netflix provided a training data set of 100,480,507 ratings that 480,189 users gave to 17,770
movies for the Netflix competition [1]. This dataset had the Cinematch algorithm running on it.

Classification of ratings matrix.

We display the density plot of observed (y-axis) vs. deconvolved or expected true (x-axis) ratings for
all datasets considered in our evaluation in Figure 2. The two datasets that have no recommender sys-
tem running on them are Jester-1 and Jester-2 [2]. Figures 2 a,b display the density plot of observed
vs. deconvolved ratings for the two datasets. The fact that this dataset did not use a recommender
system is evident from the density plot, wherein we see that the observed and deconvolved ratings
are linearly correlated. In contrast, the density plot of observed vs. deconvolved ratings for the other
datasets (Figure 2 c-k) show varying levels of dispersion, and indicate that the observed and decon-
volved ratings are not very correlated or that a recommender system is operating on these datasets.
It is the ratings that fall in the zones above and below the straight line of linear correlation that suffer
from recommender effects.

References
[1] J. Bennett and S. Lanning. The Netflix prize. In Proceedings of the KDD Cup Workshop, pp. 3–6, 2007.

[2] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigentaste: A constant time collaborative filtering algorithm. Inf.
Retr., 4(2):133–151, July 2001.

[3] M. J. Salganik, P. S. Dodds, and D. J. Watts. Experimental study of inequality and unpredictability in an artificial cultural
market. Science, 311(5762):854–856, 2006.

6

Figure 2: Density plot of deconvolved vs.observed ratings for (a) Jester-1 (b) Jester-2 (c)
MovieLens-100K (d) MovieLens-1M (e) MovieLens-10M (f) RateBeer (g) BeerAdvocate (h) Wine
Ratings (i) Fine Foods (j) Netflix, respectively

7

