Part of Advances in Neural Information Processing Systems 23 (NIPS 2010)

*Vladimir Kolmogorov*

Consider a convex relaxation $\hat f$ of a pseudo-boolean function $f$. We say that the relaxation is {\em totally half-integral} if $\hat f(\bx)$ is a polyhedral function with half-integral extreme points $\bx$, and this property is preserved after adding an arbitrary combination of constraints of the form $x_i=x_j$, $x_i=1-x_j$, and $x_i=\gamma$ where $\gamma\in\{0,1,\frac{1}{2}\}$ is a constant. A well-known example is the {\em roof duality} relaxation for quadratic pseudo-boolean functions $f$. We argue that total half-integrality is a natural requirement for generalizations of roof duality to arbitrary pseudo-boolean functions. Our contributions are as follows. First, we provide a complete characterization of totally half-integral relaxations $\hat f$ by establishing a one-to-one correspondence with {\em bisubmodular functions}. Second, we give a new characterization of bisubmodular functions. Finally, we show some relationships between general totally half-integral relaxations and relaxations based on the roof duality.

Do not remove: This comment is monitored to verify that the site is working properly