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Abstract

Consider a convex relaxation f̂ of a pseudo-boolean function f . We say that
the relaxation is totally half-integral if f̂(x) is a polyhedral function with half-
integral extreme points x, and this property is preserved after adding an arbitrary
combination of constraints of the form xi = xj , xi = 1 − xj , and xi = γ where
γ ∈ {0, 1, 12} is a constant. A well-known example is the roof duality relaxation
for quadratic pseudo-boolean functions f . We argue that total half-integrality is a
natural requirement for generalizations of roof duality to arbitrary pseudo-boolean
functions.
Our contributions are as follows. First, we provide a complete characterization
of totally half-integral relaxations f̂ by establishing a one-to-one correspondence
with bisubmodular functions. Second, we give a new characterization of bisub-
modular functions. Finally, we show some relationships between general totally
half-integral relaxations and relaxations based on the roof duality.

1 Introduction

Let V be a set of |V | = n nodes and B ⊂ K1/2 ⊂ K be the following sets:

B = {0, 1}V K1/2 = {0, 12 , 1}
V K = [0, 1]V

A function f : B → R is called pseudo-boolean. In this paper we consider convex relaxations
f̂ : K → R of f which we call totally half-integral:

Definition 1. (a) Function f̂ : P → R where P ⊆ K is called half-integral if it is a convex
polyhedral function such that all extreme points of the epigraph {(x, z) | x ∈ P, z ≥ f̂(x)} have
the form (x, f̂(x)) where x ∈ K1/2. (b) Function f̂ : K → R is called totally half-integral if
restrictions f̂ : P → R are half-integral for all subsets P ⊆ K obtained from K by adding an
arbitrary combination of constraints of the form xi = xj , xi = xj , and xi = γ for points x ∈ K.
Here i, j denote nodes in V , γ denotes a constant in {0, 1, 12}, and z ≡ 1− z.

A well-known example of a totally half-integral relaxation is the roof duality relaxation for quadratic
pseudo-boolean functions f(x) =

∑
i cixi +

∑
(i,j) cijxixj studied by Hammer, Hansen and

Simeone [13]. It is known to possess the persistency property: for any half-integral minimizer
x̂ ∈ arg min f̂(x̂) there exists minimizer x ∈ arg min f(x) such that xi = x̂i for all nodes i with
integral component x̂i. This property is quite important in practice as it allows to reduce the size
of the minimization problem when x̂ 6= 1

2 . The set of nodes with guaranteed optimal solution can
sometimes be increased further using the PROBE technique [6], which also relies on persistency.

The goal of this paper is to generalize the roof duality approach to arbitrary pseudo-boolean func-
tions. The total half-integrality is a very natural requirement of such generalizations, as discussed
later in this section. As we prove, total half-integrality implies persistency.
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We provide a complete characterization of totally half-integral relaxations. Namely, we prove in sec-
tion 2 that if f̂ : K → R is totally half-integral then its restriction toK1/2 is a bisubmodular function,
and conversely any bisubmodular function can be extended to a totally half-integral relaxation.

Definition 2. Function f : K1/2 → R is called bisubmodular if

f(x u y) + f(x t y) ≤ f(x) + f(y) ∀x,y ∈ K1/2 (1)

where binary operators u,t : K1/2 ×K1/2 → K1/2 are defined component-wise as follows:

u 0 1
2

1

0 0 1
2

1
2

1
2

1
2

1
2

1
2

1 1
2

1
2

1

t 0 1
2

1

0 0 0 1
2

1
2

0 1
2

1

1 1
2

1 1

(2)

As our second contribution, we give a new characterization of bisubmodular functions (section 3).
Using this characterization, we then prove several results showing links with the roof duality relax-
ation (section 4).

1.1 Applications

This work has been motivated by computer vision applications. A fundamental task in vision is
to infer pixel properties from observed data. These properties can be the type of object to which
the pixel belongs, distance to the camera, pixel intensity before being corrupted by noise, etc. The
popular MAP-MRF approach casts the inference task as an energy minimization problem with the
objective function of the form f(x) =

∑
C fC(x) where C ⊂ V are subsets of neighboring pixels

of small cardinality (|C| = 1, 2, 3, . . .) and terms fC(x) depend only on labels of pixels in C.

For some vision applications the roof duality approach [13] has shown a good performance [30,
32, 23, 24, 33, 1, 16, 17].1 Functions with higher-order terms are steadily gaining popularity in
computer vision [31, 33, 1, 16, 17]; it is generally accepted that they correspond to better image
models. Therefore, studying generalizations of roof duality to arbitrary pseudo-boolean functions
is an important task. In such generalizations the total half-integrality property is essential. Indeed,
in practice, the relaxation f̂ is obtained as the sum of relaxations f̂C constructed for each term
independently. Some of these terms can be c|xi − xj | and c|xi + xj − 1|. If c is sufficiently
large, then applying the roof duality relaxation to these terms would yield constraints xi = xj and
x = xj present in the definition of total half-integrality. Constraints xi = γ ∈ {0, 1, 12} can also
be simulated via the roof duality, e.g. xi = xj , xi = xj for the same pair of nodes i, j implies
xi = xj = 1

2 .

1.2 Related work

Half-integrality There is a vast literature on using half-integral relaxations for various combina-
torial optimization problems. In many cases these relaxations lead to 2-approximation algorithms.
Below we list a few representative papers.

The earliest work recognizing half-integrality of polytopes with certain pairwise constraints was
perhaps by Balinksi [3], while the persistency property goes back to Nemhauser and Trotter [28]
who considered the vertex cover problem. Hammer, Hansen and Simeone [13] established that these
properties hold for the roof duality relaxation for quadratic pseudo-boolean functions. Their work
was generalized to arbitrary pseudo-boolean functions by Lu and Williams [25]. (The relaxation
in [25] relied on converting function f to a multinomial representation; see section 4 for more
details.) Hochbaum [14, 15] gave a class of integer problems with half-integral relaxations. Very
recently, Iwata and Nagano [18] formulated a half-integral relaxation for the problem of minimizing
submodular function f(x) under constraints of the form xi + xj ≥ 1.

1In many vision problems variables xi are not binary. However, such problems are often reduced to
a sequence of binary minimization problems using iterative move-making algorithms, e.g. using expansion
moves [9] or fusion moves [23, 24, 33, 17].
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In computer vision, several researchers considered the following scheme: given a function f(x) =∑
fC(x), convert terms fC(x) to quadratic pseudo-boolean functions by introducing auxiliary

binary variables, and then apply the roof duality relaxation to the latter. Woodford et al. [33] used
this technique for the stereo reconstruction problem, while Ali et al. [1] and Ishikawa [16] explored
different conversions to quadratic functions.

To the best of our knowledge, all examples of totally half-integral relaxations proposed so far belong
to the class of submodular relaxations, which is defined in section 4. They form a subclass of more
general bisubmodular relaxations.

Bisubmodularity Bisubmodular functions were introduced by Chandrasekaran and Kabadi as rank
functions of (poly-)pseudomatroids [10, 19]. Independently, Bouchet [7] introduced the concept of
∆-matroids which is equivalent to pseudomatroids. Bisubmodular functions and their generaliza-
tions have also been considered by Qi [29], Nakamura [27], Bouchet and Cunningham [8] and Fu-
jishige [11]. The notion of the Lovász extension of a bisubmodular function introduced by Qi [29]
will be of particular importance for our work (see next section).

It has been shown that some submodular minimization algorithms can be generalized to bisubmod-
ular functions. Qi [29] showed the applicability of the ellipsoid method. A weakly polynomial com-
binatorial algorithm for minimizing bisubmodular functions was given by Fujishige and Iwata [12],
and a strongly polynomial version was given by McCormick and Fujishige [26].

Recently, we introduced strongly and weakly tree-submodular functions [22] that generalize bisub-
modular functions.

2 Total half-integrality and bisubmodularity

The first result of this paper is following theorem.

Theorem 3. If f̂ : K → R is a totally half-integral relaxation then its restriction to K1/2 is bisub-
modular. Conversely, if function f : K1/2 → R is bisubmodular then it has a unique totally half-
integral extension f̂ : K → R.

This section is devoted to the proof of theorem 3. Denote L = [−1, 1]V , L1/2 = {−1, 0, 1}V . It
will be convenient to work with functions ĥ : L → R and h : L1/2 → R obtained from f̂ and f via
a linear change of coordinates xi 7→ 2xi − 1. Under this change totally half-integral relaxations are
transformed to totally integral relaxations:

Definition 4. Let ĥ : L → R be a function of n variables. (a) ĥ is called integral if it is a convex
polyhedral function such that all extreme points of the epigraph {(x, z) |x ∈ L, z ≥ ĥ(x)} have the
form (x, ĥ(x)) where x ∈ L1/2. (b) ĥ is called totally integral if it is integral and for an arbitrary
ordering of nodes the following functions of n− 1 variables (if n > 1) are totally integral:

ĥ′(x1, . . . , xn−1) = ĥ(x1, . . . , xn−1, xn−1)

ĥ′(x1, . . . , xn−1) = ĥ(x1, . . . , xn−1,−xn−1)

ĥ′(x1, . . . , xn−1) = ĥ(x1, . . . , xn−1, γ) for any constant γ ∈ {−1, 0, 1}

The definition of a bisubmodular function is adapted as follows: function h : L1/2 → R is bisub-
modular if inequality (1) holds for all x,y ∈ L1/2 where operations u,t are defined by tables (2)
after replacements 0 7→ −1, 1

2 7→ 0, 1 7→ 1. To prove theorem 3, it suffices to establish a link
between totally integral relaxations ĥ : L → R and bisubmodular functions h : L1/2 → R. We can
assume without loss of generality that ĥ(0) = h(0) = 0, since adding a constant to the functions
does not affect the theorem.

A pair ω = (π,σ) where π : V → {1, . . . , n} is a permutation of V and σ ∈ {−1, 1}V will be
called a signed ordering. Let us rename nodes in V so that π(i) = i. To each signed ordering ω we
associate labelings x0,x1, . . . ,xn ∈ L1/2 as follows:

x0 = (0, 0, . . . , 0) x1 = (σ1, 0, . . . , 0) . . . xn = (σ1, σ2, . . . , σn) (3)
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where nodes are ordered according to π.

Consider function h : L1/2 → R with h(0) = 0. Its Lovász extension ĥ : RV → R is defined in
the following way [29]. Given a vector x ∈ RV , select a signed ordering ω = (π,σ) as follows:
(i) choose π so that values |xi|, i ∈ V are non-increasing, and rename nodes accordingly so that
|x1| ≥ . . . ≥ |xn|; (ii) if xi 6= 0 set σi = sign(xi), otherwise choose σi ∈ {−1, 1} arbitrarily. It
is not difficult to check that

x =

n∑
i=1

λix
i (4a)

where labelings xi are defined in (3) (with respect to the selected signed ordering) and λi = |xi| −
|xi+1| for i = 1, . . . , n− 1, λn = |xn|. The value of the Lovász extension is now defined as

ĥ(x) =

n∑
i=1

λih(xi) (4b)

Theorem 5 ([29]). Function h is bisubmodular if and only if its Lovász extension ĥ is convex on
L. 2

Let Lω be the set of vectors in L for which signed ordering ω = (π,σ) can be selected. Clearly,
Lω = {x ∈ L | |x1| ≥ . . . ≥ |xn|, xiσi ≥ 0 ∀i ∈ V }. It is easy to check that Lω is the convex hull
of n + 1 points (3). Equations (4) imply that ĥ is linear on Lω and coincides with h in each corner
x0, . . . , xn.

Lemma 6. Suppose function h̃ : L → R is totally integral. Then h̃ is linear on simplex Lω for each
signed ordering ω = (π,σ).

Proof. We use induction on n = |V |. For n = 1 the claim is straightforward; suppose that n ≥ 2.
Consider signed ordering ω = (π,σ). We need to prove that h̃ is linear on the boundary ∂Lω; this
will imply that ĝ is linear on Lω since otherwise h̃ would have an extreme point in the the interior
Lω\∂Lω which cannot be integral.

Let X = {x0, . . . ,xn} be the set of extreme points of Lω defined by (3). The boundary ∂Lω is the
union of n + 1 facets L0

ω, . . . ,Ln
ω where Li

ω is the convex hull of points in X\{xi}. Let us prove
that h̃ is linear on L0

ω . All points x ∈ X\{x0} satisfy x1 = σ1, therefore L0
ω = {x ∈ Lω | x1 =

σ1}. Consider function of n − 1 variables h̃′(x2, . . . , xn) = h̃(σ1, x2, . . . , xn), and let L′ 0ω be the
projection of L0

ω to RV \{1}. By the induction hypothesis h̃′ is linear on L′ 0ω , and thus h̃ is linear on
L0
ω .

The fact that h̃ is linear on other facets can be proved in a similar way. Note that for i = 2, . . . , n−1
there holds Li

ω = {x ∈ Lω | xi = σi−1σixi−1}, and for i = n we have Ln
ω = {x ∈ Lω | xn = 0}.

Corollary 7. Suppose function h̃ : L → R with h̃(0) = 0 is totally integral. Let h be the restriction
of h̃ to L1/2 and ĥ be the Lovász extension of h. Then h̃ and ĥ coincide on L.

Theorem 5 and corollary 7 imply the first part of theorem 3. The second part will follow from

Lemma 8. If h : L1/2 → R with h(0) = 0 is bisubmodular then its Lovász extension ĥ : L → R is
totally integral.

2Note, Qi formulates this result slightly differently: ĥ is assumed to be convex on RV rather than on L.
However, it is easy to see that convexity of ĥ on L implies convexity of ĥ on RV . Indeed, it can be checked
that ĥ is positively homogeneous, i.e. ĥ(γx) = γĥ(x) for any γ ≥ 0, x ∈ RV . Therefore, for any x,y ∈ RV

and α, β ≥ 0 with α+ β = 1 there holds

ĥ(αx+ βy) =
1

γ
ĥ(αγx+ βγy) ≤ α

γ
ĥ(γx) +

β

γ
ĥ(γy) = αĥ(x) + βĥ(y)

where the inequality in the middle follows from convexity of ĥ on L, assuming that γ is a sufficiently small
constant.
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Proof. We use induction on n = |V |. For n = 1 the claim is straightforward; suppose that n ≥ 2.
By theorem 5, ĥ is convex on L. Function ĥ is integral since it is linear on each simplex Lω and
vertices of Lω belong to L1/2. It remains to show that functions ĥ′ considered in definition 4 are
totally integral. Consider the following functions h′ : {−1, 0, 1}V \{n} → R:

h′(x1, . . . , xn−1) = h(x1, . . . , xn−1, xn−1)

h′(x1, . . . , xn−1) = h(x1, . . . , xn−1,−xn−1)

h′(x1, . . . , xn−1) = h(x1, . . . , xn−1, γ) , γ ∈ {−1, 0, 1}
It can be checked that these functions are bisubmodular, and their Lovász extensions coincide with
respective functions ĥ′ used in definition 4. The claim now follows from the induction hypothesis.

3 A new characterization of bisubmodularity

In this section we give an alternative definition of bisubmodularity; it will be helpful later for de-
scribing a relationship to the roof duality. As is often done for bisubmodular functions, we will
encode each half-integral value xi ∈ {0, 1, 12} via two binary variables (ui, ui′) according to the
following rules:

0↔ (0, 1) 1↔ (1, 0) 1
2 ↔ (0, 0)

Thus, labelings in K1/2 will be represented via labelings in the set

X− = {u ∈ {0, 1}V | (ui, ui′) 6= (1, 1) ∀ i ∈ V }
where V = {i, i′ | i ∈ V } is a set with 2n nodes. The node i′ for i ∈ V is called the “mate” of
i; intuitively, variable ui′ corresponds to the complement of ui. We define (i′)′ = i for i ∈ V .
Labelings in X− will be denoted either by a single letter, e.g. u or v, or by a pair of letters, e.g.
(x,y). In the latter case we assume that the two components correspond to labelings of V and
V \V , respectively, and the order of variables in both components match. Using this convention, the
one-to-one mapping X− → K1/2 can be written as (x,y) 7→ 1

2 (x + y). Accordingly, instead of
function f : K1/2 → R we will work with the function g : X− → R defined by

g(x,y) = f

(
x+ y

2

)
(5)

Note that the set of integer labelings B ⊂ K1/2 corresponds to the set X ◦ = {u ∈ X− | (ui, ui′) 6=
(0, 0)}, so function g : X− → R can be viewed as a discrete relaxation of function g : X ◦ → R.
Definition 9. Function f : X− → R is called bisubmodular if

f(u u v) + f(u t v) ≤ f(u) + f(v) ∀u,v ∈ X− (6)

where u u v = u ∧ v, u t v = REDUCE(u ∨ v) and REDUCE(w) is the labeling obtained from
w by changing labels (wi, wi′) from (1, 1) to (0, 0) for all i ∈ V .

To describe a new characterization, we need to introduce some additional notation. We denote
X = {0, 1}V to be the set of all binary labelings of V . For a labeling u ∈ X , define labeling u′ by
(u′)i = ui′ . Labels (ui, ui′) are transformed according to the rules

(0, 1)→ (0, 1) (1, 0)→ (1, 0) (0, 0)→ (1, 1) (1, 1)→ (0, 0) (7)

Equivalently, this mapping can be written as (x,y)′ = (y,x). Note that u′′ = u, (u∧v)′ = u′∨v′
and (u ∨ v)′ = u′ ∧ v′ for u,v ∈ X . Next, we define sets

X− = {u ∈ X | u ≤ u′} = {u ∈ X | (ui, u′i) 6= (1, 1) ∀i ∈ V }
X+ = {u ∈ X | u ≥ u′} = {u ∈ X | (ui, u′i) 6= (0, 0) ∀i ∈ V }
X ◦ = {u ∈ X | u = u′} = {u ∈ X | (ui, u′i) ∈ {(0, 1), (1, 0)} ∀i ∈ V } = X− ∩ X+

X ? = X− ∪ X+

Clearly, u ∈ X− if and only if u′ ∈ X+. Also, any function g : X− → R can be uniquely extended
to a function g : X ? → R so that the following condition holds:

g(u′) = g(u) ∀u ∈ X ? (8)
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Proposition 10. Let g : X ? → R be a function satisfying (8). The following conditions are equiva-
lent:

(a) g is bisubmodular, i.e. it satisfies (6).

(b) g satisfies the following inequalities:

g(u ∧ v) + g(u ∨ v) ≤ g(u) + g(v) if u,v,u ∧ v,u ∨ v ∈ X ? (9)

(c) g satisfies those inequalities in (6) for which u = w ∨ ei, v = w ∨ ej where w = u ∧ v
and i, j are distinct nodes in V with wi = wj = 0. Here ek for node k ∈ V denotes the
labeling in X with ekk = 1 and ekk′ = 0 for k′ ∈ V \{k}.

(d) g satisfies those inequalities in (9) for which u = w ∨ ei, v = w ∨ ej where w = u ∧ v
and i, j are distinct nodes in V with zi = zj = 0.

A proof is given [20]. Note, an equivalent of characterization (c) was given by Ando et al. [2]; we
state it here for completeness.

Remark 1 In order to compare characterizations (b,d) to existing characterizations (a,c), we need
to analyze the sets of inequalities in (b,d) modulo eq. (8), i.e. after replacing terms g(w), w ∈ X+

with g(w′). In can be seen that the inequalities in (a) are neither subset nor superset of those in (b)3,
so (b) is a new characterization. It is also possible to show that from this point of view (c) and (d)
are equivalent.

4 Submodular relaxations and roof duality

Consider a submodular function g : X → R satisfying the following “symmetry” condition:

g(u′) = g(u) ∀u ∈ X (10)

We call such function g a submodular relaxation of function f(x) = g(x,x). Clearly, it satisfies
conditions of proposition 10, so g is also a bisubmodular relaxation of f . Furthermore, minimizing
g is equivalent to minimizing its restriction g : X− → R; indeed, if u ∈ X is a minimizer of g then
so are u′ and u ∧ u′ ∈ X−.

In this section we will do the following: (i) prove that any pseudo-boolean function f : B → R has
a submodular relaxation g : X → R; (ii) show that the roof duality relaxation for quadratic pseudo-
boolean functions is a submodular relaxation, and it dominates all other bisubmodular relaxations;
(iii) show that for non-quadratic pseudo-boolean functions bisubmodular relaxations can be tighter
than submodular ones; (iv) prove that similar to the roof duality relaxation, bisubmodular relaxations
possess the persistency property.

Review of roof duality Consider a quadratic pseudo-boolean function f : B → R:

f(x) =
∑
i∈V

fi(xi) +
∑

(i,j)∈E

fij(xi, xj) (11)

where (V,E) is an undirected graph and xi ∈ {0, 1} for i ∈ V are binary variables. Hammer,
Hansen and Simeone [13] formulated several linear programming relaxations of this function and

3Denote u =
(

1
0

0
0

1
0

0
0

)
and v =

(
0
0

1
0

0
1

0
0

)
where the top and bottom rows correspond to the labelings

of V and V \V respectively, with |V | = 4. Plugging pair (u,v) into (6) gives the following inequality:

g
(

0
0

0
0

0
0

0
0

)
+ g

(
1
0

1
0

0
0

0
0

)
≤ g

(
1
0

0
0

1
0

0
0

)
+ g

(
0
0

1
0

0
1

0
0

)
This inequality is a part of (a), but it is not present in (b): pairs (u,v) and (u′,v′) do not satisfy the RHS
of (9), while pairs (u,v′) and (u′,v) give a different inequality:

g
(

1
0

0
0

0
0

0
0

)
+ g

(
0
0

1
0

0
0

0
0

)
≤ g

(
1
0

0
0

1
0

0
0

)
+ g

(
0
0

1
0

0
1

0
0

)
where we used condition (8). Conversely, the second inequality is a part of (b) but it is not present in (a).
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showed their equivalence. One of these formulations was called a roof dual. An efficient maxflow-
based method for solving the roof duality relaxation was given by Hammer, Boros and Sun [5, 4].

We will rely on this algorithmic description of the roof duality approach [4]. The method’s idea
can be summarized as follows. Each variable xi is replaced with two binary variables ui and ui′
corresponding to xi and 1 − xi respectively. The new set of nodes is V = {i, i′ | i ∈ V }. Next,
function f is transformed to a function g : X → R by replacing each term according to the following
rules:

fi(xi) 7→ 1

2
[fi(ui) + fi(ui′)] (12a)

fij(xi, xj) 7→ 1

2
[fij(ui, uj) + fij(ui′ , uj′)] if fij(·, ·) is submodular (12b)

fij(xi, xj) 7→ 1

2
[fij(ui, uj′) + fij(ui′ , uj)] if fij(·, ·) is not submodular (12c)

g is a submodular quadratic pseudo-boolean function, so it can be minimized via a maxflow al-
gorithm. If u ∈ X is a minimizer of g then the roof duality relaxation has a minimizer x̂ with
x̂i = 1

2 (ui + ui′) [4].

It is easy to check that g(u) = g(u′) for all u ∈ X , therefore g is a submodular relaxation. Also, f
and g are equivalent when ui′ = ui for all i ∈ V , i.e.

g(x,x) = f(x) ∀x ∈ B (13)

Invariance to variable flipping Suppose that g is a (bi-)submodular relaxation of function f :
B → R. Let i be a fixed node in V , and consider function f ′(x) obtained from f(x) by a change of
coordinates xi 7→ xi and function g′(u) obtained from g(u) by swapping variables ui and ui′ . It is
easy to check that g′ is a (bi-)submodular relaxation of f ′. Furthermore, if f is a quadratic pseudo-
boolean function and g is its submodular relaxation constructed by the roof duality approach, then
applying the roof duality approach to f ′ yields function g′. We will sometimes use such “flipping”
operation for reducing the number of considered cases.

Conversion to roof duality Let us now consider a non-quadratic pseudo-boolean function f : B →
R. Several papers [33, 1, 16] proposed the following scheme: (1) Convert f to a quadratic pseudo-
boolean function f̃ by introducing k auxiliary binary variables so that f(x) = minα∈{0,1}k f̃(x,α)

for all labelings x ∈ B. (2) Construct submodular relaxation g̃(x,α,y,β) of f̃ by applying the roof
duality relaxation to f̃ ; then

g̃(x,α,y,β) = g̃(y,β,x,α) , g̃(x,α,x,α) = f̃(x,α) ∀x,y ∈ B, α,β ∈ {0, 1}k

(3) Obtain function g by minimizing out auxiliary variables: g(x,y) =
minα,β∈{0,1}k g̃(x,α,y,β).

One can check that g(x,y) = g(y,x), so g is a submodular relaxation4. In general, however,
it may not be a relaxation of function f , i.e. (13) may not hold; we are only guaranteed to have
g(x,x) ≤ f(x) for all labelings x ∈ B.

Existence of submodular relaxations It is easy to check that if f : B → R is submodular
then function g(x,y) = 1

2 [f(x) + f(y)] is a submodular relaxation of f .5 Thus, monomials of
the form cΠi∈Axi where c ≤ 0 and A ⊆ V have submodular relaxations. Using the “flipping”
operation xi 7→ xi, we conclude that submodular relaxations also exist for monomials of the form

4It is well-known that minimizing variables out preserves submodularity. Indeed, suppose that h(x) =

minα h̃(x,α) where h̃ is a submodular function. Then h is also submodular since

h(x) + h(y) = h̃(x,α) + h̃(y,β) ≥ h̃(x ∧ y,α ∧ β) + h̃(x ∨ y,α ∨ β) ≥ h(x ∧ y) + h(x ∨ y)

5In fact, it dominates all other bisubmodular relaxations ḡ : X− → R of f . Indeed, consider labeling
(x,y) ∈ X−. It can be checked that (x,y) = u u v = u t v where u = (x,x) and v = (y,y), therefore
ḡ(x,y) ≤ 1

2
[ḡ(u) + ḡ(v)] = 1

2
[f(x) + f(y)] = g(x,y).
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cΠi∈AxiΠi∈Bxi where c ≤ 0 and A,B are disjoint subsets of U . It is known that any pseudo-
boolean function f can be represented as a sum of such monomials (see e.g. [4]; we need to represent
−f as a posiform and take its negative). This implies that any pseudo-boolean function f has a
submodular relaxation.

Note that this argument is due to Lu and Williams [25] who converted function f to a sum of
monomials of the form cΠi∈Axi and cxkΠi∈Axi, c ≤ 0, k /∈ A. It is possible to show that the
relaxation proposed in [25] is equivalent to the submodular relaxation constructed by the scheme
above (we omit the derivation).

Submodular vs. bisubmodular relaxations An important question is whether bisubmodular
relaxations are more “powerful” compared to submodular ones. The next theorem gives a class of
functions for which the answer is negative; its proof is given in [20].
Theorem 11. Let g be the submodular relaxation of a quadratic pseudo-boolean function f defined
by (12), and assume that the set E does not have parallel edges. Then g dominates any other
bisubmodular relaxation ḡ of f , i.e. g(u) ≥ ḡ(u) for all u ∈ X−.

For non-quadratic pseudo-boolean functions, however, the situation can be different. In [20]. we
give an example of a function f of n = 4 variables which has a tight bisubmodular relaxation g (i.e.
g has a minimizer in X ◦), but all submodular relaxations are not tight.

Persistency Finally, we show that bisubmodular functions possess the autarky property, which
implies persistency.
Proposition 12. Let f : K1/2 → R be a bisubmodular function and x ∈ K1/2 be its minimizer.

[Autarky] Let y be a labeling in B. Consider labeling z = (y t x) t x. Then z ∈ B and
f(z) ≤ f(y).

[Persistency] Function f : B → R has a minimizer x∗ ∈ B such that x∗i = xi for nodes i ∈ V
with integral xi.

Proof. It can be checked that zi = yi if xi = 1
2 and zi = xi if xi ∈ {0, 1}. Thus, z ∈ B. For

any w ∈ K1/2 there holds f(w t x) ≤ f(w) + [f(x) − f(w u x)] ≤ f(w). This implies that
f((y t x) t x) ≤ f(y). Applying the autarky property to a labeling y ∈ arg min{f(x) | x ∈ B }
yields persistency.

5 Conclusions and future work

We showed that bisubmodular functions can be viewed as a natural generalization of the roof duality
approach to higher-order cliques. As mentioned in the introduction, this work has been motivated
by computer vision applications that use functions of the form f(x) =

∑
C fC(x). An important

open question is how to construct bisubmodular relaxations f̂C for individual terms. For terms of
low order, e.g. with |C| = 3, this potentially could be done by solving a small linear program.

Another important question is how to minimize such functions. Algorithms in [12, 26] are unlikely
to be practical for most vision problems, which typically have tens of thousands of variables. How-
ever, in our case we need to minimize a bisubmodular function which has a special structure: it
is represented as a sum of low-order bisubmodular terms. We recently showed [21] that a sum of
low-order submodular terms can be optimized more efficiently using maxflow-like techniques. We
conjecture that similar techniques can be developed for bisubmodular functions as well.
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