Training conditional maximum entropy models on massive data requires significant time and computational resources. In this paper, we investigate three common distributed training strategies: distributed gradient, majority voting ensembles, and parameter mixtures. We analyze the worst-case runtime and resource costs of each and present a theoretical foundation for the convergence of parameters under parameter mixtures, the most efficient strategy. We present large-scale experiments comparing the different strategies and demonstrate that parameter mixtures over independent models use fewer resources and achieve comparable loss as compared to standard approaches.