
Efficient Large-Scale Distributed Training of
Conditional Maximum Entropy Models

Gideon Mann
Google

gmann@google.com

Ryan McDonald
Google

ryanmcd@google.com

Mehryar Mohri
Courant Institute and Google
mohri@cims.nyu.edu

Nathan Silberman
Google

nsilberman@google.com

Daniel D. Walker∗
NLP Lab, Brigham Young University

danl4@cs.byu.edu

Abstract

Training conditional maximum entropy models on massive data sets requires sig-
nificant computational resources. We examine three common distributed training
methods for conditional maxent: a distributed gradient computation method, a
majority vote method, and a mixture weight method. We analyze and compare the
CPU and network time complexity of each of these methods and present a theoret-
ical analysis of conditional maxent models, including a study of the convergence
of the mixture weight method, the most resource-efficient technique. We also re-
port the results of large-scale experiments comparing these three methods which
demonstrate the benefits of the mixture weight method: this method consumes
less resources, while achieving a performance comparable to that of standard ap-
proaches.

1 Introduction

Conditional maximum entropy models [1, 3], conditional maxent models for short, also known as
multinomial logistic regression models, are widely used in applications, most prominently for multi-
class classification problems with a large number of classes in natural language processing [1, 3] and
computer vision [12] over the last decade or more.

These models are based on the maximum entropy principle of Jaynes [11], which consists of se-
lecting among the models approximately consistent with the constraints, the one with the greatest
entropy. They benefit from a theoretical foundation similar to that of standard maxent probabilistic
models used for density estimation [8]. In particular, a duality theorem for conditional maxentmodel
shows that these models belong to the exponential family. As shown by Lebanon and Lafferty [13],
in the case of two classes, these models are also closely related to AdaBoost, which can be viewed as
solving precisely the same optimization problem with the same constraints, modulo a normalization
constraint needed in the conditional maxent case to derive probability distributions.

While the theoretical foundation of conditional maxent models makes them attractive, the computa-
tional cost of their optimization problem is often prohibitive for data sets of several million points.
A number of algorithms have been described for batch training of conditional maxent models using
a single processor. These include generalized iterative scaling [7], improved iterative scaling [8],
gradient descent, conjugate gradient methods, and second-order methods [15, 18].

This paper examines distributed methods for training conditional maxent models that can scale to
very large samples of up to 1B instances. Both batch algorithms and on-line training algorithms such

∗This work was conducted while at Google Research, New York.

1

as that of [5] or stochastic gradient descent [21] can benefit from parallelization, but we concentrate
here on batch distributed methods.

We examine three common distributed training methods: a distributed gradient computation method
[4], a majority vote method, and a mixture weight method. We analyze and compare the CPU and
network time complexity of each of these methods (Section 2) and present a theoretical analysis of
conditional maxent models (Section 3), including a study of the convergence of the mixture weight
method, the most resource-efficient technique. We also report the results of large-scale experiments
comparing these three methods which demonstrate the benefits of the mixture weight method (Sec-
tion 4): this method consumes less resources, while achieving a performance comparable to that of
standard approaches such as the distributed gradient computation method.1

2 Distributed Training of Conditional Maxent Models

In this section, we first briefly describe the optimization problem for conditional maximum entropy
models, then discuss three common methods for distributed training of these models and compare
their CPU and network time complexity.

2.1 Conditional Maxent Optimization problem

Let X be the input space, Y the output space, and Φ: X×Y→ H a (feature) mapping to a Hilbert
space H , which in many practical settings coincides with RN , N = dim(H) < ∞. We denote by
‖ ·‖ the norm induced by the inner product associated toH .

Let S =((x1, y1), . . . , (xm, ym)) be a training sample ofm pairs in X×Y. A conditional maximum
entropy model is a conditional probability of the form pw[y|x]= 1

Z(x) exp(w ·Φ(x, y)) with Z(x)=
∑

y∈Y exp(w·Φ(x, y)), where the weight or parameter vectorw∈H is the solution of the following
optimization problem:

w = argmin
w∈H

FS(w) = argmin
w∈H

λ‖w‖2 −
1

m

m∑

i=1

log pw[yi|xi]. (1)

Here, λ≥ 0 is a regularization parameter typically selected via cross-validation. The optimization
problem just described corresponds to an L2 regularization. Many other types of regularization have
been considered for the same problem in the literature, in particular L1 regularization or regulariza-
tions based on other norms. This paper will focus on conditional maximum entropy models with L2

regularization.

These models have been extensively used and studied in natural language processing [1, 3] and
other areas where they are typically used for classification. Given the weight vectorw, the output y
predicted by the model for an input x is:

y = argmax
y∈Y

pw[y|x] = argmax
y∈Y

w · Φ(x, y). (2)

Since the function FS is convex and differentiable, gradient-based methods can be used to find a
global minimizer w of FS . Standard training methods such as iterative scaling, gradient descent,
conjugate gradient, and limited-memory quasi-Newton all have the general form of Figure 1, where
the update function Γ: H → H for the gradient ∇FS(w) depends on the optimization method
selected. T is the number of iterations needed for the algorithm to converge to a global minimum.
In practice, convergence occurs whenFS(w) differs by less than a constant ε in successive iterations
of the loop.

2.2 Distributed Gradient Computation Method

Since the points are sampled i.i.d., the gradient computation in step 3 of Figure 1 can be distributed
across p machines. Consider a sample S = (S1, . . . , Sp) of pm points formed by p subsamples of

1A batch parallel estimation technique for maxent models based on their connection with AdaBoost is also
described by [5]. This algorithm is quite different from the distributed gradient computation method, but, as for
that method, it requires a substantial amount of network resources, since updates need to be transferred to the
master at every iteration.

2

1 w ← 0

2 for t ← 1 to T do
3 ∇FS(w) ← GRADIENT(FS(w))
4 w ← w +Γ(∇FS(w))
5 returnw

Figure 1: Standard Training

1 w ← 0

2 for t ← 1 to T do
3 ∇FS(w) ← DISTGRADIENT(FSk

(w) ‖ p machines)
4 w ← w +Γ(∇FS(w))
5 UPDATE(w ‖ p machines)
6 returnw

Figure 2: Distributed Gradient Training

m points drawn i.i.d., S1, . . . , Sp. At each iteration, the gradients∇FSk
(w) are computed by these

p machines in parallel. These separate gradients are then summed up to compute the exact global
gradient on a single machine, which also performs the optimization step and updates the weight
vector received by all other machines (Figure 2). Chu et al. [4] describe a map-reduce formulation
for this computation, where each training epoch consists of one map (compute each ∇FSk

(w))
and one reduce (update w). However, the update method they present is that of Newton-Raphson,
which requires the computation of the Hessian. We do not consider such strategies, since Hessian
computations are often infeasible for large data sets.

2.3 Majority Vote Method

The ensemble methods described in the next two paragraphs are based on mixture weights µ∈Rp.
Let∆p ={µ ∈ Rp : µ≥0∧

∑p
k=1 µk = 1} denote the simplex ofRp and let µ∈∆p. In the absence

of any prior knowledge, µ is chosen to be the uniform mixture µ0 =(1/p, . . . , 1/p) as in all of our
experiments.

Instead of computing the gradient of the global function in parallel, a (weighted) majority vote
method can be used. Each machine receives one subsample Sk, k ∈ [1, p], and computes wk =
argminw∈H FSk

(w) by applying the standard training of Figure 1 to Sk. The output y predicted by
the majority vote method for an input x is

y = argmax
y∈Y

p∑

k=1

µk I(argmax
y′∈Y

pwk
[y′|x] = y), (3)

where I is an indicator function of the predicate it takes as argument. Alternatively, the con-
ditional class probabilities could be used to take into account the uncertainty of each classifier:
y=argmaxy

∑p
k=1 µk pwk

[y|x].

2.4 Mixture Weight Method

The cost of storing p weight vectors can make the majority vote method unappealing. Instead, a
single mixture weightwµ can be defined form the weight vectorswk, k∈ [1, p]:

wµ =
p∑

k=1

µkwk. (4)

The mixture weightwµ can be used directly for classification.

2.5 Comparison of CPU and Network Times

This section compares the CPU and network time complexity of the three training methods just
described. Table 1 summarizes these results. Here, we denote byN the dimension ofH . User CPU
represents the CPU time experienced by the user, cumulative CPU the total amount of CPU time for
the machines participating in the computation, and latency the experienced runtime effects due to
network activity. The cumulative network usage is the amount of data transferred across the network
during a distributed computation.

For a training sample of pm points, both the user and cumulative CPU times are in Ocpu(TpmN)
when training on a single machine (Figure 1) since at each of the T iterations, the gradient compu-
tation must iterate over all pm training points and update all the components ofw.

3

Training Training Training Prediction
User CPU + Latency Cum. CPU Cum. Network User CPU

Single Machine Ocpu(pmNT) Ocpu(pmNT) N/A Ocpu(N)
Distributed Gradient Ocpu(mNT) + Olat(NT) Ocpu(pmNT) Onet(pNT) Ocpu(N)
Majority Vote Ocpu(mNTmax) + Olat(N)

Pp
k=1

Ocpu(mNTk) Onet(pN) Ocpu(pN)
Mixture Weight Ocpu(mNTmax) + Olat(N)

Pp
k=1

Ocpu(mNTk) Onet(pN) Ocpu(N)

Table 1: Comparison of CPU and network times.

For the distributed gradient method (Section 2.2), the worst-case user CPU of the gradient and
parameter update computations (lines 3-4 of Figure 2) is Ocpu(mN +pN +N) since each parallel
gradient calculation takesmN to compute the gradient form instances, p gradients of size N need
to be summed, and the parameters updated. We assume here that the time to compute Γ is negligible.
If we assume that p*m, then, the user CPU is in Ocpu(mNT). Note that the number of iterations
it takes to converge, T , is the same as when training on a single machine since the computations are
identical.

In terms of network usage, a distributed gradient strategy will incur a cost of Onet(pNT) and a
latency proportional to Olat(NT), since at each iteration w must be transmitted to each of the
p machines (in parallel) and each ∇FSk

(w) returned back to the master. Network time can be
improved through better data partitioning of S when Φ(x, y) is sparse. The exact runtime cost of
latency is complicated as it depends on factors such as the physical distance between the master and
each machine, connectivity, the switch fabric in the network, and CPU costs required to manage
messages. For parallelization on massively multi-core machines [4], communication latency might
be negligible. However, in large data centers running commodity machines, a more common case,
network latency cost can be significant.

The training times are identical for the majority vote and mixture weight techniques. Let Tk be the
number of iterations for training the kth mixture componentwk and let Tmax = max{T1, . . . , Tp}.
Then, the user CPU usage of training is inOcpu(mNTmax), similar to that of the distributed gradient
method. However, in practice, Tmax is typically less than T since convergence is often faster with
smaller data sets. A crucial advantage of these methods over the distributed gradient method is that
their network usage is significantly less than that of the distributed gradient computation. While
parameters and gradients are exchanged at each iteration for this method, majority vote and mixture
weight techniques only require the final weight vectors to be transferred at the conclusion of training.
Thus, the overall network usage is Onet(pN) with a latency in Olat(NT). The main difference
between the majority vote and mixture weight methods is the user CPU (and memory usage) for
prediction which is in Ocpu(pN) versus Ocpu(N) for the mixture weight method. Prediction could
be distributed over pmachines for the majority vote method, but that would incur additional machine
and network bandwidth costs.

3 Theoretical Analysis

This section presents a theoretical analysis of conditional maxent models, including a study of the
convergence of the mixture weight method, the most resource-efficient technique, as suggested in
the previous section.

The results we obtain are quite general and include the proof of several fundamental properties of
the weight vectorw obtained when training a conditional maxent model. We first prove the stability
of w in response to a change in one of the training points. We then give a convergence bound for
w as a function of the sample size in terms of the norm of the feature space and also show a similar
result for the mixture weightwµ. These results are used to compare the weight vectorwpm obtained
by training on a sample of size pm with the mixture weight vectorwµ.

Consider two training samples of size m, S = (z1, . . . , zm−1, zm) and S′ = (z1, . . . , zm−1, z′m),
with elements in X×Y , that differ by a single training point, which we arbitrarily set as the last one
of each sample: zm = (xm, ym) and z′m = (x′

m, y′
m). Let w denote the parameter vector returned

by conditional maximum entropy when trained on sample S, w′ the vector returned when trained
on S′, and let ∆w denote w′−w. We shall assume that the feature vectors are bounded, that is
there exists R > 0 such that for all (x, y) in X ×Y , ‖Φ(x, y)‖≤R. Our bounds are derived using

4

techniques similar to those used by Bousquet and Elisseeff [2], or other authors, e.g., [6], in the
analysis of stability. In what follows, for any w∈H and z = (x, y)∈X ×Y , we denote by Lz(w)
the negative log-likelihood - log pw[y|x].
Theorem 1. Let S′ and S be two arbitrary samples of size m differing only by one point. Then, the
following stability bound holds for the weight vector returned by a conditional maxent model:

‖∆w‖ ≤
2R

λm
. (5)

Proof. We denote byBF the Bregman divergence associated to a convex and differentiable function
F defined for all u,u′ by: BF (u′‖u) = F (u′)−F (u)−∇F (u)·(u′−u). LetGS denote the function
u ,→ 1

m

∑m
i=1 Lzi

(u) and W the function u ,→ λ‖u‖2. GS and W are convex and differentiable
functions. Since the Bregman divergence is non-negative,BGS

≥ 0 and BFS
=BW + BGS

≥BW .
Similarly,BFS′

≥ BW . Thus, the following inequality holds:

BW (w′‖w) + BW (w‖w′) ≤ BFS
(w′‖w) + BFS′

(w‖w′). (6)
By the definition ofw andw′ as the minimizers of FS and FS′ , ∇FS(w) = ∇FS′(w′) = 0 and

BFS
(w′‖w) + BFS′

(w‖w′) = FS(w′) − FS(w) + FS′(w) − FS′(w′)

=
1

m

[[
Lzm

(w′) − Lzm
(w)

]
+

[
Lz′

m
(w) − Lz′

m
(w′)

]]

≤ −
1

m

[
∇Lzm

(w′) · (w − w
′) + ∇Lz′

m
(w) · (w′ − w)

]

= −
1

m

[
∇Lz′

m
(w) −∇Lzm

(w′)
]
· (w′ − w),

where we used the convexity ofLz′

m
andLzm

. It is not hard to see thatBW (w′‖w)+BW (w‖w′) =
2λ‖∆w‖2. Thus, the application of the Cauchy-Schwarz inequality to the inequality just established
yields

2λ ‖∆w‖ ≤
1

m
‖∇Lzm

(w′) −∇Lz′

m
(w)‖ ≤

1

m

[
‖∇Lzm

(w′)‖ + ‖∇Lz′

m
(w)‖

]
. (7)

The gradient ofw ,→ Lzm
(w) = log

∑
y∈Y ew·Φ(xm,y)−w · Φ(xm, ym) is given by

∇Lzm
(w) =

∑
y∈Y ew·Φ(xm,y)Φ(xm, y)
∑

y′∈Y ew·Φ(xm,y′)
− Φ(xm, ym) = E

y∼pw[·|xm]

[
Φ(xm, y) − Φ(xm, ym)

]
.

Thus, we obtain ‖∇Lzm
(w′)‖ ≤ Ey∼p

w
′ [·|xm]

[
‖Φ(xm, y)−Φ(xm, ym)‖

]
≤ 2R and similarly

‖∇Lz′

m
(w)‖≤2R, which leads to the statement of the theorem.

Let D denote the distribution according to which training and test points are drawn and let F ! be
the objective function associated to the optimization defined with respect to the true log loss:

F !(w) = argmin
w∈H

λ‖w‖2 + E
z∼D

[
Lz(w)

]
. (8)

F ! is a convex function since ED[Lz] is convex. Let the solution of this optimization be denoted by
w! = argminw∈H F !(w).

Theorem 2. Let w ∈ H be the weight vector returned by conditional maximum entropy when
trained on a sample S of size m. Then, for any δ > 0, with probability at least 1−δ, the following
inequality holds:

‖w − w
!‖ ≤

R

λ
√

m/2

(
1 +

√
log 1/δ

)
. (9)

Proof. Let S and S′ be as before samples of size m differing by a single point. To derive this
bound, we apply McDiarmid’s inequality [17] to Ψ(S)=‖w − w!‖. By the triangle inequality and
Theorem 1, the following Lipschitz property holds:

|Ψ(S′) − Ψ(S)| =
∣∣‖w′ − w

!‖ − ‖w − w
!‖

∣∣ ≤ ‖w′ − w‖ ≤
2R

λm
. (10)

5

Thus, by McDiarmid’s inequality, Pr[Ψ−E[Ψ]≥ ε]≤ exp
(−2ε2m

4R2/λ2

)
. The following bound can be

shown for the expectation of Ψ (see longer version of this paper): E[Ψ] ≤ 2R
λ
√

2m
. Using this bound

and setting the right-hand side of McDiarmid’s inequality to δ show that the following holds

Ψ ≤ E[Ψ] +
2R

λ

√
log 1

δ

2m
≤

2R

λ
√

2m

(
1 +

√
log 1/δ

)
, (11)

with probability at least 1−δ.

Note that, remarkably, the bound of Theorem 2 does not depend on the dimension of the feature
space but only on the radiusR of the sphere containing the feature vectors.

Consider now a sample S =(S1, . . . , Sp) of pm points formed by p subsamples of m points drawn
i.i.d. and letwµ denote theµ-mixture weight as defined in Section 2.4. The following theorem gives
a learning bound forwµ.
Theorem 3. For anyµ ∈ ∆p, letwµ ∈ H denote the mixture weight vector obtained from a sample
of size pm by combining the p weight vectorswk, k∈ [1, p], each returned by conditional maximum
entropy when trained on the sample Sk of size m. Then, for any δ>0, with probability at least 1−δ,
the following inequality holds:

‖wµ − w
!‖ ≤ E

[
‖wµ − w

!‖
]
+

R‖µ‖
λ
√

m/2

√
log 1/δ. (12)

For the uniform mixture µ0 =(1/p, . . . , 1/p), the bound becomes

‖wµ − w
!‖ ≤ E

[
‖wµ − w

!‖
]
+

R

λ
√

pm/2

√
log 1/δ. (13)

Proof. The result follows by application of McDiarmid’s inequality to Υ(S) = ‖wµ − w!‖. Let
S′ = (S′

1, . . . , S
′
p) denote a sample differing from S by one point, say in subsample Sk. Let w′

k

denote the weight vector obtained by training on subsample S′
k and w′

µ the mixture weight vector
associated to S′. Then, by the triangle inequality and the stability bound of Theorem 1, the following
holds:

|Υ(S′) − Υ(S)| =
∣∣‖w′

µ − w
!‖ − ‖wµ − w

!‖
∣∣ ≤ ‖w′

µ − wµ‖ = µk‖w′
k − wk‖ ≤

2µkR

λm
.

Thus, by McDiarmid’s inequality,

Pr[Υ(S) − E[Υ(S)] ≥ ε] ≤ exp

(
−2ε2

∑p
k=1 m

(2µkR
λm

)2

)
= exp

(
−2λ2mε2

4R2‖µ‖2

)
, (14)

which proves the first statement and the uniform mixture case since ‖µ0‖ = 1/
√

p.

Theorems 2 and 3 help us compare the mixture weight wpm obtained by training on a sample of
size pm versus the mixture weight vector wµ

0
. The regularization parameter λ is a function of

the sample size. To simplify the analysis, we shall assume that λ = O(1/m1/4) for a sample of
size m. A similar discussion holds for other comparable asymptotic behaviors. By Theorem 2,
‖wpm − w!‖ converges to zero in O(1/(λ

√
pm)) = O(1/(pm)1/4), since λ = O(1/(pm)1/4) in

that case. But, by Theorem 3, the slack term bounding ‖wµ
0
− w!‖ converges to zero at the faster

rate O(1/(λ
√

pm))=O(1/p1/2m1/4), since here λ=O(1/m1/4). The expectation term appearing
in the bound on ‖wµ0

− w!‖, E[‖wµ0
− w!‖], does not benefit from the same convergence rate

however. E[‖wµ
0
− w!‖] converges always as fast as the expectation E[‖wm − w!‖] for a weight

vectorwm obtained by training on a sample of sizem since, by the triangle inequality, the following
holds:

E[‖wµ − w
!‖] = E[‖

1

p

p∑

k=1

(wk − w
!)‖] ≤

1

p

p∑

k=1

E[‖wk − w
!‖] = E[‖w1 − w

!‖]. (15)

By the proof of Theorem 2, E[‖w1−w!‖]≤R/(λ
√

m/2)=O(1/(λ
√

m)), thus E[‖wµ−w!‖]≤
O(1/m1/4). In summary, wµ0

always converges significantly faster than wm. The convergence
bound forwµ

0
contains two terms, one somewhat more favorable, one somewhat less than its coun-

terpart term in the bound forwpm.

6

pm |Y| |X | sparsity p
English POS [16] 1 M 24 500 K 0.001 10
Sentiment 9 M 3 500 K 0.001 10
RCV1-v2 [14] 26 M 103 10 K 0.08 10
Speech 50 M 129 39 1.0 499
Deja News Archive 306 M 8 50 K 0.002 200
Deja News Archive 250K 306 M 8 250 K 0.0004 200
Gigaword [10] 1,000 M 96 10 K 0.001 1000

Table 2: Description of data sets. The column named sparsity reports the frequency of non-zero
feature values for each data set.

4 Experiments

We ran a number of experiments on data sets ranging in size from 1M to 1B labeled instances (see
Table 2) to compare the three distributed training methods described in Section 2. Our experiments
were carried out using a large cluster of commodity machines with a local shared disk space and a
high rate of connectivity between each machine and between machines and disk. Thus, while the
processes did not run on one multi-core supercomputer, the network latency between machines was
minimized.

We report accuracy, wall clock, cumulative CPU usage, and cumulative network usage for all of our
experiments. Wall clock measures the combined effects of the user CPU and latency costs (column
1 of Table 1), and includes the total time for training, including all summations. Network usage
measures the amount of data transferred across the network. Due to the set-up of our cluster, this
includes both machine-to-machine traffic and machine-to-disk traffic. The resource estimates were
calculated by point-sampling and integrating over the sampling time. For all three methods, we used
the same base implementation of conditional maximum entropy, modified only in whether or not the
gradient was computed in a distributed fashion.

Our first set of experiments were carried out with “medium” scale data sets containing 1M-300M in-
stances. These included: English part-of-speech tagging, generated from the Penn Treebank
[16] using the first character of each part-of-speech tag as output, sections 2-21 for training, section
23 for testing and a feature representation based on the identity, affixes, and orthography of the in-
put word and the words in a window of size two; Sentiment analysis, generated from a set of
online product, service, and merchant reviews with a three-label output (positive, negative, neutral),
with a bag of words feature representation; RCV1-v2 as described by [14], where documents having
multiple labels were included multiple times, once for each label; Acoustic Speech Data, a 39-
dimensional input consisting of 13 PLP coefficients, plus their first and second derivatives, and 129
outputs (43 phones × 3 acoustic states); and the Deja News Archive, a text topic classification
problem generated from a collection of Usenet discussion forums from the years 1995-2000. For all
text experiments, we used random feature mixing [9, 20] to control the size of the feature space.

The results reported in Table 3 show that the accuracy of the mixture weight method consistently
matches or exceeds that of the majority vote method. As expected, the resource costs here are
similar, with slight differences due to the point-sampling methods and the overhead associated with
storing p models in memory and writing them to disk. For some data sets, we could not report
majority vote results as all models could not fit into memory on a single machine.

The comparison shows that in some cases the mixture weight method takes longer and achieves
somewhat better performance than the distributed gradient method while for other data sets it ter-
minates faster, at a slight loss in accuracy. These differences may be due to the performance of the
optimization with respect to the regularization parameter λ. However, the results clearly demon-
strate that the mixture weight method achieves comparable accuracies at a much decreased cost in
network bandwidth – upwards of 1000x. Depending on the cost model assessed for the underlying
network and CPU resources, this may make mixture weight a significantly more appealing strategy.
In particular, if network usage leads to significant increases in latency, unlike our current experi-
mental set-up of high rates of connectivity, then the mixture weight method could be substantially
faster to train. The outlier appears to be the acoustic speech data, where both mixture weight and
distributed gradient have comparable network usage, 158GB and 200GB, respectively. However, the
bulk of this comes from the fact that the data set itself is 157GB in size, which makes the network

7

Training Method Accuracy Wall Clock Cumulative CPU Network Usage
English POS Distributed Gradient 97.60% 17.5 m 11.0 h 652 GB
(m=100k,p=10) Majority Vote 96.80% 12.5 m 18.5 h 0.686 GB

Mixture Weight 96.80% 5 m 11.5 h 0.015 GB
Sentiment Distributed Gradient 81.18% 104 m 123 h 367 GB
(m=900k,p=10) Majority Vote 81.25% 131 m 168 h 3 GB

Mixture Weight 81.30% 110 m 163 h 9 GB
RCV1-v2 Distributed Gradient 27.03% 48 m 407 h 479 GB
(m=2.6M,p=10) Majority Vote 26.89% 54 m 474 h 3 GB

Mixture Weight 27.15% 56 m 473 h 0.108 GB
Speech Distributed Gradient 34.95% 160 m 511 h 200 GB
(m=100k,p=499) Mixture Weight 34.99% 130 m 534 h 158 GB
Deja Distributed Gradient 64.74% 327 m 733 h 5,283 GB
(m=1.5M,p=200) Mixture Weight 65.46% 316 m 707 h 48 GB
Deja 250K Distributed Gradient 67.03% 340 m 698 h 17,428 GB
(m=1.5M,p=200) Mixture Weight 66.86% 300 m 710 h 65 GB
Gigaword Distributed Gradient 51.16% 240 m 18,598 h 13,000 GB
(m=1M,p=1k) Mixture Weight 50.12% 215 m 17,998 h 21 GB

Table 3: Accuracy and resource costs for distributed training strategies.

usage closer to 1GB for the mixture weight and 40GB for distributed gradient method when we
discard machine-to-disk traffic.

For the largest experiment, we examined the task of predicting the next character in a sequence
of text [19], which has implications for many natural language processing tasks. As a training
and evaluation corpus we used the English Gigaword corpus [10] and used the full ASCII output
space of that corpus of around 100 output classes (uppercase and lowercase alphabet characters
variants, digits, punctuation, and whitespace). For each character s, we designed a set of observed
features based on substrings from s−1, the previous character, to s−10, 9 previous characters, and
hashed each into a 10k-dimensional space in an effort to improve speed. Since there were around
100 output classes, this led to roughly 1M parameters. We then sub-sampled 1B characters from
the corpus as well as 10k testing characters and established a training set of 1000 subsets, of 1M
instances each. For the experiments described above, the regularization parameter λ was kept fixed
across the differentmethods. Here, we decreased the parameterλ for the distributed gradient method
since less regularizationwas needed when more data was available, and since there were three orders
of magnitude difference between the training size for each independent model and the distributed
gradient. We compared only the distributed gradient and mixture weight methods since the majority
vote method exceeded memory capacity. On this data set, the network usage is on a different scale
than most of the previous experiments, though comparable to Deja 250, with the distributed gradient
method transferring 13TB across the network. Overall, the mixture weight method consumes less
resources: less bandwidth and less time (both wall clock and CPU). With respect to accuracy, the
mixtureweight method does only slightly worse than the distributed gradientmethod. The individual
models in the mixture weight method ranged between 49.73% to 50.26%, with a mean accuracy
of 50.07%, so a mixture weight model improves slightly over a random subsample models and
decreases the overall variance.

5 Conclusion

Our analysis and experiments give significant support for the mixture weight method for training
very large-scale conditional maximum entropy models with L2 regularization. Empirical results
suggest that this method achieves similar or better accuracies while reducing network usage by
about three orders of magnitude and modestly reducing the wall clock time, typically by about 15%
or more. In distributed environments without a high rate of connectivity, the decreased network
usage of the mixture weight method should lead to substantial gains in wall clock as well.

Acknowledgments

We thank Yishay Mansour for his comments on an earlier version of this paper.

8

References
[1] A. Berger, V. Della Pietra, and S. Della Pietra. A maximum entropy approach to natural

language processing. Computational Linguistics, 22(1):39–71, 1996.
[2] O. Bousquet and A. Elisseeff. Stability and generalization. Journal of Machine Learning

Research, 2:499–526, 2002.
[3] S. F. Chen and R. Rosenfeld. A survey of smoothing techniques for ME models. IEEE Trans-

actions on Speech and Audio Processing, 8(1):37–50, 2000.
[4] C. Chu, S. Kim, Y. Lin, Y. Yu, G. Bradski, A. Ng, and K. Olukotun. Map-Reduce for machine

learning on multicore. In Advances in Neural Information Processing Systems, 2007.
[5] M. Collins, R. Schapire, and Y. Singer. Logistic regression, AdaBoost and Bregman distances.

Machine Learning, 48, 2002.
[6] C. Cortes, M. Mohri, M. Riley, and A. Rostamizadeh. Sample selection bias correction theory.

In Proceedings of ALT 2008, volume 5254 of LNCS, pages 38–53. Springer, 2008.
[7] J. Darroch and D. Ratcliff. Generalized iterative scaling for log-linear models. The Annals of

Mathematical Statistics, pages 1470–1480, 1972.
[8] S. Della Pietra, V. Della Pietra, J. Lafferty, R. Technol, and S. Brook. Inducing features of

random fields. IEEE transactions on pattern analysis and machine intelligence, 19(4):380–
393, 1997.

[9] K. Ganchev and M. Dredze. Small statistical models by random feature mixing. In Workshop
on Mobile Language Processing, ACL, 2008.

[10] D. Graff, J. Kong, K. Chen, and K. Maeda. English gigaword third edition, linguistic data
consortium, philadelphia, 2007.

[11] E. T. Jaynes. Information theory and statistical mechanics. Physical Review, 106(4):620630,
1957.

[12] J. Jeon and R. Manmatha. Using maximum entropy for automatic image annotation. In Inter-
national Conference on Image and Video Retrieval, 2004.

[13] G. Lebanon and J. Lafferty. Boosting and maximum likelihood for exponential models. In
Advances in Neural Information Processing Systems, pages 447–454, 2001.

[14] D. Lewis, Y. Yang, T. Rose, and F. Li. RCV1: A new benchmark collection for text catego-
rization research. Journal of Machine Learning Research, 5:361–397, 2004.

[15] R. Malouf. A comparison of algorithms for maximum entropy parameter estimation. In Inter-
national Conference on Computational Linguistics (COLING), 2002.

[16] M. Marcus, M. Marcinkiewicz, and B. Santorini. Building a large annotated corpus of English:
The Penn Treebank. Computational linguistics, 19(2):313–330, 1993.

[17] C. McDiarmid. On the method of bounded differences. In Surveys in Combinatorics, pages
148–188. Cambridge University Press, Cambridge, 1989.

[18] J. Nocedal and S. Wright. Numerical optimization. Springer, 1999.
[19] C. E. Shannon. Prediction and entropy of printed English. Bell Systems Technical Journal,

30:50–64, 1951.
[20] K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg. Feature hashing for

large scale multitask learning. In International Conference on Machine Learning, 2009.
[21] T. Zhang. Solving large scale linear prediction problems using stochastic gradient descent

algorithms. In International Conference on Machine Learning, 2004.

9

