Part of Advances in Neural Information Processing Systems 21 (NIPS 2008)
Bernhard Nessler, Michael Pfeiffer, Wolfgang Maass
Uncertainty is omnipresent when we perceive or interact with our environment, and the Bayesian framework provides computational methods for dealing with it. Mathematical models for Bayesian decision making typically require datastructures that are hard to implement in neural networks. This article shows that even the simplest and experimentally best supported type of synaptic plasticity, Hebbian learning, in combination with a sparse, redundant neural code, can in principle learn to infer optimal Bayesian decisions. We present a concrete Hebbian learning rule operating on log-probability ratios. Modulated by reward-signals, this Hebbian plasticity rule also provides a new perspective for understanding how Bayesian inference could support fast reinforcement learning in the brain. In particular we show that recent experimental results by Yang and Shadlen [1] on reinforcement learning of probabilistic inference in primates can be modeled in this way.