
Hebbian Learning of Bayes Optimal Decisions

Bernhard Nessler∗, Michael Pfeiffer∗, and Wolfgang Maass
Institute for Theoretical Computer Science

Graz University of Technology
A-8010 Graz, Austria

{nessler,pfeiffer,maass}@igi.tugraz.at

Abstract

Uncertainty is omnipresent when we perceive or interact with our environment,
and the Bayesian framework provides computational methods for dealing with
it. Mathematical models for Bayesian decision making typically require data-
structures that are hard to implement in neural networks. This article shows that
even the simplest and experimentally best supported type of synaptic plasticity,
Hebbian learning, in combination with a sparse, redundant neural code, can in
principle learn to infer optimal Bayesian decisions. We present a concrete Hebbian
learning rule operating on log-probability ratios. Modulated by reward-signals,
this Hebbian plasticity rule also provides a new perspective for understanding
how Bayesian inference could support fast reinforcement learning in the brain.
In particular we show that recent experimental results by Yang and Shadlen [1] on
reinforcement learning of probabilistic inference in primates can be modeled in
this way.

1 Introduction

Evolution is likely to favor those biological organisms which are able to maximize the chance of
achieving correct decisions in response to multiple unreliable sources of evidence. Hence one may
argue that probabilistic inference, rather than logical inference, is the ”mathematics of the mind”,
and that this perspective may help us to understand the principles of computation and learning in
the brain [2]. Bayesian inference, or equivalently inference in Bayesian networks [3] is the most
commonly considered framework for probabilistic inference, and a mathematical theory for learning
in Bayesian networks has been developed.

Various attempts to relate these theoretically optimal models to experimentally supported models for
computation and plasticity in networks of neurons in the brain have been made. [2] models Bayesian
inference through an approximate implementation of the Belief Propagation algorithm (see [3]) in a
network of spiking neurons. For reduced classes of probability distributions, [4] proposed a method
for spiking network models to learn Bayesian inference with an online approximation to an EM
algorithm. The approach of [5] interprets the weightwji of a synaptic connection between neurons

representing the random variablesxi andxj aslog
p(xi,xj)

p(xi)·p(xj)
, and presents algorithms for learning

these weights.

Neural correlates of variables that are important for decision making under uncertainty had been
presented e.g. in the recent experimental study by Yang and Shadlen [1]. In their study they found
that firing rates of neurons in area LIP of macaque monkeys reflect the log-likelihood ratio (or log-
odd) of the outcome of a binary decision, given visual evidence. The learning of such log-odds
for Bayesian decision making can be reduced to learning weights for a linear classifier, given an
appropriate but fixed transformation from the input to possibly nonlinear features [6]. We show

∗Both authors contributed equally to this work.

1

that the optimal weights for the linear decision function areactually log-odds themselves, and the
definition of the features determines the assumptions of the learner about statistical dependencies
among inputs.

In this work we show that simple Hebbian learning [7] is sufficient to implement learning of Bayes
optimal decisions for arbitrarily complex probability distributions. We present and analyze a con-
crete learning rule, which we call theBayesian Hebb rule, and show that it provably converges
towards correct log-odds. In combination with appropriate preprocessing networks this implements
learning of different probabilistic decision making processes like e.g. Naive Bayesian classification.
Finally we show that a reward-modulated version of this Hebbian learning rule can solve simple
reinforcement learning tasks, and also provides a model for the experimental results of [1].

2 A Hebbian rule for learning log-odds

We consider the model of a linear threshold neuron with outputy0, wherey0 = 1 means that the
neuron is firing andy0 = 0 means non-firing. The neuron’s current decisionŷ0 whether to fire or not
is given by a linear decision function̂y0 = sign(w0 · constant +

∑n

i=1 wiyi), where theyi are the
current firing states of all presynaptic neurons andwi are the weights of the corresponding synapses.

We propose the following learning rule, which we call the Bayesian Hebb rule:

∆wi =

{

η (1 + e−wi), if y0 = 1 andyi = 1
−η (1 + ewi), if y0 = 0 andyi = 1

0, if yi = 0.
(1)

This learning rule is purely local, i.e. it depends only on the binary firing state of the pre- and
postsynaptic neuronyi andy0, the current weightwi and a learning rateη. Under the assumption
of a stationary joint probability distribution of the pre- and postsynaptic firing statesy0, y1, . . . , yn

the Bayesian Hebb rule learns log-probability ratios of the postsynaptic firing statey0, conditioned
on a corresponding presynaptic firing stateyi. We consider in this article the use of the rule in a
supervised, teacher forced mode (see Section 3), and also in a reinforcement learning mode (see
Section 4). We will prove that the rule converges globally to the target weight valuew∗

i , given by

w∗
i = log

p(y0 = 1|yi = 1)

p(y0 = 0|yi = 1)
. (2)

We first show that the expected updateE[∆wi] under (1) vanishes at the target valuew∗
i :

E[∆w∗
i] = 0 ⇔ p(y0=1, yi=1)η(1 + e−w∗

i)− p(y0=0, yi=1)η(1 + ew∗

i) = 0

⇔
1 + ew∗

i

1 + e−w∗

i

=
p(y0=1, yi=1)

p(y0=0, yi=1)

⇔ w∗
i = log

p(y0=1|yi=1)

p(y0=0|yi=1)
. (3)

Since the above is a chain of equivalence transformations, this proves thatw∗
i is the only equilibrium

value of the rule. The weight vectorw∗ is thus a global point-attractor with regard to expected weight
changes of the Bayesian Hebb rule (1) in then-dimensional weight-spaceRn.

Furthermore we show, using the result from (3), that the expected weight change at any current value
of wi points in the direction ofw∗

i . Consider some arbitrary intermediate weight valuewi = w∗
i +2ǫ:

E[∆wi]|w∗

i
+2ǫ = E[∆wi]|w∗

i
+2ǫ − E[∆wi]|w∗

i

∝ p(y0=1, yi=1)e−w∗

i (e−2ǫ − 1)− p(y0=0, yi=1)ew∗

i (e2ǫ − 1)

= (p(y0=0, yi=1)e−ǫ + p(y0=1, yi=1)eǫ)(e−ǫ − eǫ) . (4)

The first factor in (4) is always non-negative, henceǫ < 0 impliesE[∆wi] > 0, andǫ > 0 implies
E[∆wi] < 0. The Bayesian Hebb rule is therefore always expected to perform updates in the right
direction, and the initial weight values or perturbations of the weights decay exponentially fast.

2

Already after having seen a finite set of examples〈y0, . . . , yn〉 ∈ {0, 1}n+1, the Bayesian Hebb rule
closely approximates the optimal weight vectorŵ that can be inferred from the data. A traditional
frequentist’s approach would use countersai = #[y0=1 ∧ yi=1] andbi = #[y0=0 ∧ yi=1] to
estimate everyw∗

i by

ŵi = log
ai

bi

. (5)

A Bayesian approach would modelp(y0|yi) with an (initially flat) Beta-distribution, and use the
countersai andbi to update this belief [3], leading to the same MAP estimateŵi. Consequently, in
both approaches a new example withy0 = 1 andyi = 1 leads to the update

ŵnew
i = log

ai + 1

bi

= log
ai

bi

(

1 +
1

ai

)

= ŵi + log(1 +
1

Ni

(1 + e−ŵi)) , (6)

whereNi := ai + bi is the number of previously processed examples withyi = 1, thus 1
ai

=
1

Ni
(1 + bi

ai
). Analogously, a new example withy0 = 0 andyi = 1 gives rise to the update

ŵnew
i = log

ai

bi + 1
= log

ai

bi

(

1

1 + 1
bi

)

= ŵi − log(1 +
1

Ni

(1 + eŵi)). (7)

Furthermore,̂wnew
i = ŵi for a new example withyi = 0. Using the approximationlog(1 + α) ≈ α

the update rules (6) and (7) yield the Bayesian Hebb rule (1) with an adaptive learning rateηi = 1
Ni

for each synapse.

In fact, a result of Robbins-Monro (see [8] for a review) implies that the updating of weight estimates
ŵi according to (6) and (7) converges to the target valuesw∗

i not only for the particular choice

η
(Ni)
i = 1

Ni
, but for any sequenceη(Ni)

i that satisfies
∑∞

Ni=1 η
(Ni)
i = ∞ and

∑∞
Ni=1(η

(Ni)
i)2 <

∞. More than that the Supermartingale Convergence Theorem (see [8]) guarantees convergence in
distribution even for a sufficiently small constant learning rate.

Learning rate adaptation

One can see from the above considerations that the Bayesian Hebb rule with a constant learning rate
η converges globally to the desired log-odds. A too small constant learning rate, however, tends
to slow down the initial convergence of the weight vector, and a too large constant learning rate
produces larger fluctuations once the steady state is reached.

(6) and (7) suggest a decaying learning rateη
(Ni)
i = 1

Ni
, whereNi is the number of preceding

examples withyi = 1. We will present a learning rate adaptation mechanism that avoids biologically
implausible counters, and is robust enough to deal even with non-stationary distributions.

Since the Bayesian Hebb rule and the Bayesian approach of updatingBeta-distributions for condi-
tional probabilities are closely related, it is reasonable to expect that the distribution of weightswi

over longer time periods with a non-vanishing learning rate will resemble aBeta(ai, bi)-distribution
transformed to the log-odd domain. The parametersai andbi in this case are not exact counters any-
more but correspond to virtual sample sizes, depending on the current learning rate. We formalize
this statistical model ofwi by

σ(wi) =
1

1 + e−wi
∼ Beta(ai, bi) ⇐⇒ wi ∼

Γ(ai + bi)

Γ(ai)Γ(bi)
σ(wi)

aiσ(−wi)
bi ,

In practice this model turned out to capture quite well the actually observed quasi-stationary distri-
bution ofwi. In [9] we show analytically thatE[wi] ≈ log ai

bi
and Var[wi] ≈

1
ai

+ 1
bi

. A learning
rate adaptation mechanism at the synapse that keeps track of the observed mean and variance of the
synaptic weight can therefore recover estimates of the virtual sample sizesai andbi. The following
mechanism, which we callvariance trackingimplements this by computing running averages of the
weights and the squares of weights inw̄i andq̄i:

ηnew
i ←

q̄i−w̄2

i

1+cosh w̄i

w̄new
i ← (1− ηi) w̄i + ηi wi

q̄new
i ← (1− ηi) q̄i + ηi w2

i .

(8)

3

In practice this mechanism decays like1
Ni

under stationary conditions, but is also able to handle
changing input distributions. It was used in all presented experiments for the Bayesian Hebb rule.

3 Hebbian learning of Bayesian decisions

We now show how the Bayesian Hebb rule can be used to learn Bayes optimal decisions. The first
application is the Naive Bayesian classifier, where a binary target variablex0 should be inferred
from a vector of multinomial variablesx = 〈x1, . . . , xm〉, under the assumption that thexi’s are
conditionally independent givenx0, thusp(x0,x) = p(x0)

∏m

1 p(xk|x0). Using basic rules of
probability theory the posterior probability ratio forx0 = 1 andx0 = 0 can be derived:

p(x0=1|x)

p(x0=0|x)
=

p(x0=1)

p(x0=0)

m
∏

k=1

p(xk|x0=1)

p(xk|x0=0)
=

(

p(x0=1)

p(x0=0)

)(1−m) m
∏

k=1

p(x0=1|xk)

p(x0=0|xk)
= (9)

=

(

p(x0=1)

p(x0=0)

)(1−m) m
∏

k=1

mk
∏

j=1

(

p(x0=1|xk=j)

p(x0=0|xk=j)

)I(xk=j)

,

wheremk is the number of different possible values of the input variablexk, and the indicator
functionI is defined asI(true) = 1 andI(false) = 0.

Let them input variablesx1, . . . , xm be represented through the binary firing statesy1, . . . , yn ∈
{0, 1} of then presynaptic neurons in a population coding manner. More precisely, let each input
variablexk ∈ {1, . . . ,mk} be represented bymk neurons, where each neuron fires only for one of
themk possible values ofxk. Formally we define the simple preprocessing (SP)

y
T =

[

φ(x1)
T, . . . ,φ(xm)T

]

with φ(xk)T = [I(xk = 1), . . . , I(xk = mk)] . (10)

The binary target variablex0 is represented directly by the binary statey0 of the postsynaptic neuron.
Substituting the state variablesy0, y1, . . . , yn in (9) and taking the logarithm leads to

log
p(y0 = 1|y)

p(y0 = 0|y)
= (1−m) log

p(y0 = 1)

p(y0 = 0)
+

n
∑

i=1

yi log
p(yi = 1|y0 = 1)

p(yi = 1|y0 = 0)
.

Hence the optimal decision under the Naive Bayes assumption is

ŷ0 = sign((1−m)w∗
0 +

n
∑

i=1

w∗
i yi) .

The optimal weightsw∗
0 andw∗

i

w∗
0 = log

p(y0 = 1)

p(y0 = 0)
and w∗

i = log
p(y0 = 1|yi = 1)

p(y0 = 0|yi = 1)
for i = 1, . . . , n.

are obviously log-odds which can be learned by the Bayesian Hebb rule (the bias weightw0 is
simply learned as an unconditional log-odd).

3.1 Learning Bayesian decisions for arbitrary distributions

We now address the more general case, where conditional independence of the input variables
x1, . . . , xm cannot be assumed. In this case the dependency structure of the underlying distribu-
tion is given in terms of an arbitrary Bayesian network BN for discrete variables (see e.g. Figure
1 A). Without loss of generality we choose a numbering scheme of the nodes of the BN such that
the node to be learned isx0 and its direct children arex1, . . . , xm′ . This implies that the BN can be
described bym + 1 (possibly empty) parent sets defined by

Pk = {i | a directed edgexi → xk exists in BN andi ≥ 1} .

The joint probability distribution on the variablesx0, . . . , xm in BN can then be factored and evalu-
ated forx0 = 1 andx0 = 0 in order to obtain the probability ratio

p(x0 = 1,x)

p(x0 = 0,x)
=

p(x0 = 1|x)

p(x0 = 0|x)
=

p(x0 = 1|xP0
)

p(x0 = 0|xP0
)

m′

∏

k=1

p(xk|xPk
, x0 = 1)

p(xk|xPk
, x0 = 0)

m
∏

k=m′+1

p(xk|xPk
)

p(xk|xPk
)

.

4

A B

Figure 1:A) An example Bayesian network with general connectivity.B) Population coding applied
to the Bayesian network shown in panel A. For each combination of values of the variables{xk,xPk

}
of a factor there is exactly one neuron (indicated by a black circle) associated with the factor that
outputs the value 1. In addition OR’s of these values are computed (black squares). We refer to the
resulting preprocessing circuit as generalized preprocessing (GP).

Obviously, the last term cancels out, and by applying Bayes’ rule and taking the logarithm the target
log-odd can be expressed as a sum of conditional log-odds only:

log
p(x0=1|x)

p(x0=0|x)
= log

p(x0=1|xP0
)

p(x0=0|xP0
)

+

m′

∑

k=1

(

log
p(x0=1|xk,xPk

)

p(x0=0|xk,xPk
)
− log

p(x0=1|xPk
)

p(x0=0|xPk
)

)

. (11)

We now develop a suitable sparse encoding of ofx1, . . . , xm into binary variablesy1, . . . , yn (with
n≫ m) such that the decision function (11) can be written as a weighted sum, and the weights corre-
spond to conditional log-odds ofyi’s. Figure 1 B illustrates such a sparse code: One binary variable
is created for every possible value assignment to a variable and all its parents, and one additional
binary variable is created for every possible value assignment to the parent nodes only. Formally,
the previously introduced population coding operatorφ is generalized such thatφ(xi1 , xi2 , . . . , xil

)

creates a vector of length
∏l

j=1 mij
that equals zero in all entries except for one1-entry which

identifies by its position in the vector the present assignment of the input variablesxi1 , . . . , xil
. The

concatenation of all these population coded groups is collected in the vectory of lengthn

y
T =

[

φ(xP0
)T, φ(x1,xP1

)T,−φ(xP1
)T, . . . , φ(xm,xPm

)T,−φ(xPm
)T
]

. (12)

The negated vector parts in (12) correspond to the negative coefficients in the sum in (11). Inserting
the sparse coding (12) into (11) allows writing the Bayes optimal decision function (11) as a pure
sum of log-odds of the target variable:

x̂0 = ŷ0 = sign(
n
∑

i=1

w∗
i yi), with w∗

i = log
p(y0=1|yi 6=0)

p(y0=0|yi 6=0)
.

Every synaptic weightwi can be learned efficiently by the Bayesian Hebb rule (1) with the formal
modification that the update is not only triggered byyi=1 but in general wheneveryi 6=0 (which
obviously does not change the behavior of the learning process). A neuron that learns with the
Bayesian Hebb rule on inputs that are generated by the generalized preprocessing (GP) defined in
(12) therefore approximates the Bayes optimal decision function (11), and converges quite fast to
the best performance that any probabilistic inference could possibly achieve (see Figure 2B).

4 The Bayesian Hebb rule in reinforcement learning

We show in this section that a reward-modulated version of the Bayesian Hebb rule enables a learn-
ing agent to solve simple reinforcement learning tasks. We consider the standard operant condi-
tioning scenario, where the learner receives at each trial an inputx = 〈x1, . . . , xm〉, chooses an
actionα out of a set of possible actionsA, and receives a binary reward signalr ∈ {0, 1} with
probability p(r|x, a). The learner’s goal is to learn (as fast as possible) a policyπ(x, a) so that
action selection according to this policy maximizes the average reward. In contrast to the previous

5

learning tasks, the learner has to explore different actionsfor the same input to learn the reward-
probabilities for all possible actions. The agent might for example choose actions stochastically
with π(x, a = α) = p(r = 1|x, a = α), which corresponds to thematching behaviorphenomenon
often observed in biology [10]. This policy was used during training in our computer experiments.

The goal is to infer the probability of binary reward, so it suffices to learn the log-oddslog
p(r=1|x,a)
p(r=0|x,a)

for every action, and choose the action that is most likely to yield reward (e.g. by a Winner-Take-All
structure). If the reward probability for an actiona = α is defined by some Bayesian network BN,
one can rewrite this log-odd as

log
p(r = 1|x, a = α)

p(r = 0|x, a = α)
= log

p(r = 1|a = α)

p(r = 0|a = α)
+

m
∑

k=1

log
p(xk|xPk

, r = 1, a = α)

p(xk|xPk
, r = 0, a = α)

. (13)

In order to use the Bayesian Hebb rule, the input vectorx is preprocessed to obtain a binary vector
y. Both a simple population code such as (10), or generalized preprocessing as in (12) and Figure
1B can be used, depending on the assumed dependency structure. The reward log-odd (13) for the
preprocessed input vectory can then be written as a linear sum

log
p(r = 1|y, a = α)

p(r = 0|y, a = α)
= w∗

α,0 +

n
∑

i=1

w∗
α,i yi ,

where the optimal weights arew∗
α,0 = log p(r=1|a=α)

p(r=0|a=α) andw∗
α,i = log p(r=1|yi 6=0,a=α)

p(r=0|yi 6=0,a=α) . These log-
odds can be learned for each possible actionα with a reward-modulated version of the Bayesian
Hebb rule (1):

∆wα,i =

{

η · (1 + e−wα,i), if r = 1, yi 6= 0, a = α
−η · (1 + ewα,i), if r = 0, yi 6= 0, a = α

0, otherwise
(14)

The attractive theoretical properties of the Bayesian Hebb rule for the prediction case apply also to
the case of reinforcement learning. The weights corresponding to the optimal policy are the only
equilibria under the reward-modulated Bayesian Hebb rule, and are also global attractors in weight
space, independently of the exploration policy (see [9]).

5 Experimental Results

5.1 Results for prediction tasks

We have tested the Bayesian Hebb rule on 400 different prediction tasks, each of them defined by a
general (non-Naive) Bayesian network of7 binary variables. The networks were randomly generated
by the algorithm of [11]. From each network we sampled 2000 training and 5000 test examples, and
measured the percentage of correct predictions after every update step.

The performance of the predictor was compared to the Bayes optimal predictor, and to online logistic
regression, which fits a linear model by gradient descent on the cross-entropy error function. This
non-Hebbian learning approach is in general the best performing online learning approach for linear
discriminators [3]. Figure 2A shows that the Bayesian Hebb rule with the simple preprocessing (10)
generalizes better from a few training examples, but is outperformed by logistic regression in the
long run, since the Naive Bayes assumption is not met. With the generalized preprocessing (12), the
Bayesian Hebb rule learns fast and converges to the Bayes optimum (see Figure 2B). In Figure 2C
we show that the Bayesian Hebb rule is robust to noisy updates - a condition very likely to occur in
biological systems. We modified the weight update∆wi such that it was uniformly distributed in
the interval∆wi ± γ%. Even such imprecise implementations of the Bayesian Hebb rule perform
very well. Similar results can be obtained if theexp-function in (1) is replaced by a low-order Taylor
approximation.

5.2 Results for action selection tasks

The reward-modulated version (14), of the Bayesian Hebb rule was tested on 250 random action
selection tasks withm = 6 binary input attributes, and 4 possible actions. For every action a

6

A B C

0 200 400 600 800 1000
0.7

0.75

0.8

0.85

0.9

0.95

1

Training Examples

C
or

re
ct

ne
ss

Bayesian Hebb SP
Log. Regression η=0.2
Naive Bayes
Bayes Optimum

0 200 400 600 800 1000
0.7

0.75

0.8

0.85

0.9

0.95

1

Training Examples

C
or

re
ct

ne
ss

Bayesian Hebb GP
Bayesian Hebb SP
Bayes Optimum

0 200 400 600 800 1000
0.7

0.75

0.8

0.85

0.9

0.95

1

Training Examples

C
or

re
ct

ne
ss

Without Noise
50% Noise
100% Noise
150% Noise

Figure 2: Performance comparison for prediction tasks.A) The Bayesian Hebb rule with simple
preprocessing (SP) learns as fast as Naive Bayes, and faster than logistic regression (with optimized
constant learning rate).B) The Bayesian Hebb rule with generalized preprocessing (GP) learns fast
and converges to the Bayes optimal prediction performance.C) Even a very imprecise implemen-
tation of the Bayesian Hebb rule (noisy updates, uniformly distributed in∆wi ± γ%) yields almost
the same learning performance.

random Bayesian network [11] was drawn to model the input and reward distributions (see [9] for
details). The agent received stochastic binary rewards for every chosen action, updated the weights
wα,i according to (14), and measured the average reward on 500 independent test trials.

In Figure 3A we compare the reward-modulated Bayesian Hebb rule with simple population coding
(10) (Bayesian Hebb SP), and generalized preprocessing (12) (Bayesian Hebb GP), to the standard
learning model for simple conditioning tasks, the non-Hebbian Rescorla-Wagner rule [12]. The
reward-modulated Bayesian Hebb rule learns as fast as the Rescorla-Wagner rule, and achieves in
combination with generalized preprocessing a higher performance level. The widely used tabular
Q-learning algorithm, in comparison is slower than the other algorithms, since it does not generalize,
but it converges to the optimal policy in the long run.

5.3 A model for the experiment of Yang and Shadlen

In the experiment by Yang and Shadlen [1], a monkey had to choose between gazing towards a red
targetR or a green targetG. The probability that a reward was received at either choice depended
on four visual input stimuli that had been shown at the beginning of the trial. Every stimulus was
one shape out of a set of ten possibilities and had an associated weight, which had been defined by
the experimenter. The sum of the four weights yielded the log-odd of obtaining a reward at the red
target, and a reward for each trial was assigned accordingly to one of the targets. The monkey thus
had to combine the evidence from four visual stimuli to optimize its action selection behavior.

In the model of the task it is sufficient to learn weights only for the actiona = R, and select
this action whenever the log-odd using the current weights is positive, andG otherwise. A simple
population code as in (10) encoded the4-dimensional visual stimulus into a40-dimensional binary
vectory. In our experiments, the reward-modulated Bayesian Hebb rule learns this task as fast and
with similar quality as the non-Hebbian Rescorla-Wagner rule. Furthermore Figures 3B and 3C
show that it produces after learning similar behavior as that reported for two monkeys in [1].

6 Discussion

We have shown that the simplest and experimentally best supported local learning mechanism, Heb-
bian learning, is sufficient to learn Bayes optimal decisions. We have introduced and analyzed the
Bayesian Hebb rule, a training method for synaptic weights, which converges fast and robustly to
optimal log-probability ratios, without requiring any communication between plasticity mechanisms
for different synapses. We have shown how the same plasticity mechanism can learn Bayes optimal
decisions under different statistical independence assumptions, if it is provided with an appropriately
preprocessed input. We have demonstrated on a variety of prediction tasks that the Bayesian Hebb
rule learns very fast, and with an appropriate sparse preprocessing mechanism for groups of statisti-
cally dependent features its performance converges to the Bayes optimum. Our approach therefore
suggests that sparse, redundant codes of input features may simplify synaptic learning processes in
spite of strong statistical dependencies. Finally we have shown that Hebbian learning also suffices

7

A B C

0 400 800 1200 1600 2000
0.4

0.5

0.6

0.7

0.8

Trials

A
ve

ra
ge

 R
ew

ar
d

Bayesian Hebb SP
Bayesian Hebb GP
Rescorla−Wagner
Q−Learning
Optimal Selector

−4 −2 0 2 4
0

20

40

60

80

100

Evidence for red (logLR)

P
er

ce
nt

ag
e

of
 r

ed
 c

ho
ic

es

−4 −2 0 2 4
0

20

40

60

80

100

Evidence for red (logLR)

P
er

ce
nt

ag
e

of
 r

ed
 c

ho
ic

es

Figure 3: A) On 250 4-action conditioning tasks with stochastic rewards, the reward-modulated
Bayesian Hebb rule with simple preprocessing (SP) learns similarly as the Rescorla-Wagner rule,
and substantially faster than Q-learning. With generalized preprocessing (GP), the rule converges to
the optimal action-selection policy.B, C) Action selection policies learned by the reward-modulated
Bayesian Hebb rule in the task by Yang and Shadlen [1] after100 (B), and1000 (C) trials are
qualitatively similar to the policies adopted by monkeysH andJ in [1] after learning.

for simple instances of reinforcement learning. The Bayesian Hebb rule, modulated by a signal
related to rewards, enables fast learning of optimal action selection. Experimental results of [1] on
reinforcement learning of probabilistic inference in primates can be partially modeled in this way
with regard to resulting behaviors.

An attractive feature of the Bayesian Hebb rule is its ability to deal with the addition or removal
of input features through the creation or deletion of synaptic connections, since no relearning of
weights is required for the other synapses. In contrast to discriminative neural learning rules, our
approach is generative, which according to [13] leads to faster generalization. Therefore the learning
rule may be viewed as a potential building block for models of the brain as a self-organizing and fast
adapting probabilistic inference machine.

Acknowledgments

We would like to thank Martin Bachler, Sophie Deneve, Rodney Douglas, Konrad Koerding, Rajesh
Rao, and especially Dan Roth for inspiring discussions. Written under partial support by the Aus-
trian Science Fund FWF, project# P17229-N04, project# S9102-N04, and project# FP6-015879
(FACETS) as well as# FP7-216593 (SECO) of the European Union.

References

[1] T. Yang and M. N. Shadlen. Probabilistic reasoning by neurons.Nature, 447:1075–1080, 2007.

[2] R. P. N. Rao. Neural models of Bayesian belief propagation. In K. Doya, S. Ishii, A. Pouget, and R. P. N.
Rao, editors,Bayesian Brain., pages 239–267. MIT-Press, 2007.

[3] C. M. Bishop.Pattern Recognition and Machine Learning. Springer (New York), 2006.

[4] S. Deneve. Bayesian spiking neurons I, II.Neural Computation, 20(1):91–145, 2008.

[5] A. Sandberg, A. Lansner, K. M. Petersson, andÖ. Ekeberg. A Bayesian attractor network with incremen-
tal learning.Network: Computation in Neural Systems, 13:179–194, 2002.

[6] D. Roth. Learning in natural language. InProc. of IJCAI, pages 898–904, 1999.

[7] D. O. Hebb.The Organization of Behavior. Wiley, New York, 1949.

[8] D. P. Bertsekas and J.N. Tsitsiklis.Neuro-Dynamic Programming. Athena Scientific, 1996.

[9] B. Nessler, M. Pfeiffer, and W. Maass. Journal version.in preparation, 2009.

[10] L. P. Sugrue, G. S. Corrado, and W. T. Newsome. Matching behavior and the representation of value in
the parietal cortex.Science, 304:1782–1787, 2004.

[11] J. S. Ide and F. G. Cozman. Random generation of Bayesian networks. InProceedings of the 16th
Brazilian Symposium on Artificial Intelligence, pages 366–375, 2002.

[12] R. A. Rescorla and A. R. Wagner. Classical conditioning II. In A. H. Black and W. F. Prokasy, editors,A
theory of Pavlovian conditioning, pages 64–99. 1972.

[13] A. Y. Ng and M. I. Jordan. On discriminative vs. generative classifiers.NIPS, 14:841–848, 2002.

8

