Out-of-Distribution Detection with a Single Unconditional Diffusion Model

Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track

Bibtex Paper Supplemental

Authors

Alvin Heng, Alexandre H. Thiery, Harold Soh

Abstract

Out-of-distribution (OOD) detection is a critical task in machine learning that seeks to identify abnormal samples. Traditionally, unsupervised methods utilize a deep generative model for OOD detection. However, such approaches require a new model to be trained for each inlier dataset. This paper explores whether a single model can perform OOD detection across diverse tasks. To that end, we introduce Diffusion Paths (DiffPath), which uses a single diffusion model originally trained to perform unconditional generation for OOD detection. We introduce a novel technique of measuring the rate-of-change and curvature of the diffusion paths connecting samples to the standard normal. Extensive experiments show that with a single model, DiffPath is competitive with prior work using individual models on a variety of OOD tasks involving different distributions. Our code is publicly available at https://github.com/clear-nus/diffpath.