Bayesian Learning via Q-Exponential Process

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper Supplemental

Authors

Shuyi Li, Michael O'Connor, Shiwei Lan

Abstract

Regularization is one of the most fundamental topics in optimization, statistics and machine learning. To get sparsity in estimating a parameter $u\in\mathbb{R}^d$, an $\ell_q$ penalty term, $\Vert u\Vert_q$, is usually added to the objective function. What is the probabilistic distribution corresponding to such $\ell_q$ penalty? What is the \emph{correct} stochastic process corresponding to $\Vert u\Vert_q$ when we model functions $u\in L^q$? This is important for statistically modeling high-dimensional objects such as images, with penalty to preserve certainty properties, e.g. edges in the image.In this work, we generalize the $q$-exponential distribution (with density proportional to) $\exp{(- \frac{1}{2}|u|^q)}$ to a stochastic process named \emph{$Q$-exponential (Q-EP) process} that corresponds to the $L_q$ regularization of functions. The key step is to specify consistent multivariate $q$-exponential distributions by choosing from a large family of elliptic contour distributions. The work is closely related to Besov process which is usually defined in terms of series. Q-EP can be regarded as a definition of Besov process with explicit probabilistic formulation, direct control on the correlation strength, and tractable prediction formula. From the Bayesian perspective, Q-EP provides a flexible prior on functions with sharper penalty ($q<2$) than the commonly used Gaussian process (GP, $q=2$).We compare GP, Besov and Q-EP in modeling functional data, reconstructing images and solving inverse problems and demonstrate the advantage of our proposed methodology.