TradeMaster: A Holistic Quantitative Trading Platform Empowered by Reinforcement Learning

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Datasets and Benchmarks Track

Bibtex Paper Supplemental

Authors

Shuo Sun, Molei Qin, Wentao Zhang, Haochong Xia, Chuqiao Zong, Jie Ying, Yonggang Xie, Lingxuan Zhao, Xinrun Wang, Bo An

Abstract

The financial markets, which involve over \$90 trillion market capitals, attract the attention of innumerable profit-seeking investors globally. Recent explosion of reinforcement learning in financial trading (RLFT) research has shown stellar performance on many quantitative trading tasks. However, it is still challenging to deploy reinforcement learning (RL) methods into real-world financial markets due to the highly composite nature of this domain, which entails design choices and interactions between components that collect financial data, conduct feature engineering, build market environments, make investment decisions, evaluate model behaviors and offers user interfaces. Despite the availability of abundant financial data and advanced RL techniques, a remarkable gap still exists between the potential and realized utilization of RL in financial trading. In particular, orchestrating an RLFT project lifecycle poses challenges in engineering (i.e. hard to build), benchmarking (i.e. hard to compare) and usability (i.e. hard to optimize, maintain and use). To overcome these challenges, we introduce TradeMaster, a holistic open-source RLFT platform that serves as a i) software toolkit, ii) empirical benchmark, and iii) user interface. Our ultimate goal is to provide infrastructures for transparent and reproducible RLFT research and facilitate their real-world deployment with industry impact. TradeMaster will be updated continuously and welcomes contributions from both RL and finance communities.