Synthetic-to-Real Pose Estimation with Geometric Reconstruction

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper Supplemental

Authors

Qiuxia Lin, Kerui Gu, Linlin Yang, Angela Yao

Abstract

Pose estimation is remarkably successful under supervised learning, but obtaining annotations, especially for new deployments, is costly and time-consuming. This work tackles adapting models trained on synthetic data to real-world target domains with only unlabelled data. A common approach is model fine-tuning with pseudo-labels from the target domain; yet many pseudo-labelling strategies cannot provide sufficient high-quality pose labels. This work proposes a reconstruction-based strategy as a complement to pseudo-labelling for synthetic-to-real domain adaptation. We generate the driving image by geometrically transforming a base image according to the predicted keypoints and enforce a reconstruction loss to refine the predictions. It provides a novel solution to effectively correct confident yet inaccurate keypoint locations through image reconstruction in domain adaptation. Our approach outperforms the previous state-of-the-arts by 8% for PCK on four large-scale hand and human real-world datasets. In particular, we excel on endpoints such as fingertips and head, with 7.2% and 29.9% improvements in PCK.