Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track
Michael Arbel, Romain Menegaux, Pierre Wolinski
This work studies the global convergence and implicit bias of Gauss Newton's (GN) when optimizing over-parameterized one-hidden layer networks in the mean-field regime. We first establish a global convergence result for GN in the continuous-time limit exhibiting a faster convergence rate compared to GD due to improved conditioning. We then perform an empirical study on a synthetic regression task to investigate the implicit bias of GN's method.While GN is consistently faster than GD in finding a global optimum, the learned model generalizes well on test data when starting from random initial weights with a small variance and using a small step size to slow down convergence. Specifically, our study shows that such a setting results in a hidden learning phenomenon, where the dynamics are able to recover features with good generalization properties despite the model having sub-optimal training and test performances due to an under-optimized linear layer. This study exhibits a trade-off between the convergence speed of GN and the generalization ability of the learned solution.