Time-Reversed Dissipation Induces Duality Between Minimizing Gradient Norm and Function Value

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper


Jaeyeon Kim, Asuman Ozdaglar, Chanwoo Park, Ernest Ryu


In convex optimization, first-order optimization methods efficiently minimizing function values have been a central subject study since Nesterov's seminal work of 1983. Recently, however, Kim and Fessler's OGM-G and Lee et al.'s FISTA-G have been presented as alternatives that efficiently minimize the gradient magnitude instead. In this paper, we present H-duality, which represents a surprising one-to-one correspondence between methods efficiently minimizing function values and methods efficiently minimizing gradient magnitude. In continuous-time formulations, H-duality corresponds to reversing the time dependence of the dissipation/friction term. To the best of our knowledge, H-duality is different from Lagrange/Fenchel duality and is distinct from any previously known duality or symmetry relations. Using H-duality, we obtain a clearer understanding of the symmetry between Nesterov's method and OGM-G, derive a new class of methods efficiently reducing gradient magnitudes of smooth convex functions, and find a new composite minimization method that is simpler and faster than FISTA-G.