SPRING: Studying Papers and Reasoning to play Games

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper


Yue Wu, So Yeon Min, Shrimai Prabhumoye, Yonatan Bisk, Russ R. Salakhutdinov, Amos Azaria, Tom M. Mitchell, Yuanzhi Li


Open-world survival games pose significant challenges for AI algorithms due to their multi-tasking, deep exploration, and goal prioritization requirements. Despite reinforcement learning (RL) being popular for solving games, its high sample complexity limits its effectiveness in complex open-world games like Crafter or Minecraft. We propose a novel approach, SPRING, to read Crafter's original academic paper and use the knowledge learned to reason and play the game through a large language model (LLM).Prompted with the LaTeX source as game context and a description of the agent's current observation, our SPRING framework employs a directed acyclic graph (DAG) with game-related questions as nodes and dependencies as edges. We identify the optimal action to take in the environment by traversing the DAG and calculating LLM responses for each node in topological order, with the LLM's answer to final node directly translating to environment actions.In our experiments, we study the quality of in-context "reasoning" induced by different forms of prompts under the setting of the Crafter environment. Our experiments suggest that LLMs, when prompted with consistent chain-of-thought, have great potential in completing sophisticated high-level trajectories. Quantitatively, SPRING with GPT-4 outperforms all state-of-the-art RL baselines, trained for 1M steps, without any training. Finally, we show the potential of Crafter as a test bed for LLMs. Code at github.com/holmeswww/SPRING