SQ Lower Bounds for Non-Gaussian Component Analysis with Weaker Assumptions

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper Supplemental

Authors

Ilias Diakonikolas, Daniel Kane, Lisheng Ren, Yuxin Sun

Abstract

We study the complexity of Non-Gaussian Component Analysis (NGCA) in the Statistical Query (SQ) model.Prior work developed a methodology to prove SQ lower bounds for NGCA that have been applicable to a wide range of contexts.In particular, it was known that for any univariate distribution $A$ satisfying certain conditions,distinguishing between a standard multivariate Gaussian and a distribution that behaves like $A$ in a random hidden direction and like a standard Gaussian in the orthogonal complement, is SQ-hard.The required conditions were that (1) $A$ matches many low-order moments with a standard Gaussian,and (2) the chi-squared norm of $A$ with respect to the standard Gaussian is finite.While the moment-matching condition is clearly necessary for hardness, the chi-squared condition was only required for technical reasons.In this work, we establish that the latter condition is indeed not necessary.In particular, we prove near-optimal SQ lower bounds for NGCA under the moment-matching condition only.