Synthcity: a benchmark framework for diverse use cases of tabular synthetic data

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Datasets and Benchmarks Track

Bibtex Paper Supplemental


Zhaozhi Qian, Rob Davis, Mihaela van der Schaar


Accessible high-quality data is the bread and butter of machine learning research, and the demand for data has exploded as larger and more advanced ML models are built across different domains. Yet, real data often contain sensitive information, are subject to various biases, and are costly to acquire, which compromise their quality and accessibility. Synthetic data have thus emerged as a complement to, sometimes even a replacement for, real data for ML training. However, the landscape of synthetic data research has been fragmented due to the diverse range of data modalities, such as tabular, time series, and images, and the wide array of use cases, including privacy preservation, fairness considerations, and data augmentation. This fragmentation poses practical challenges when comparing and selecting synthetic data generators in for different problem settings. To this end, we develop Synthcity, an open-source Python library that allows researchers and practitioners to perform one-click benchmarking of synthetic data generators across data modalities and use cases. Beyond benchmarking, Synthcity serves as a centralized toolkit for accessing cutting-edge data generators. In addition, Synthcity’s flexible plug-in style API makes it easy to incorporate additional data generators into the framework. Using examples of tabular data generation and data augmentation, we illustrate the general applicability of Synthcity, and the insight one can obtain.