From Discrete Tokens to High-Fidelity Audio Using Multi-Band Diffusion

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper Supplemental

Authors

Robin San Roman, Yossi Adi, Antoine Deleforge, Romain Serizel, Gabriel Synnaeve, Alexandre Defossez

Abstract

Deep generative models can generate high-fidelity audio conditioned on varioustypes of representations (e.g., mel-spectrograms, Mel-frequency Cepstral Coefficients(MFCC)). Recently, such models have been used to synthesize audiowaveforms conditioned on highly compressed representations. Although suchmethods produce impressive results, they are prone to generate audible artifactswhen the conditioning is flawed or imperfect. An alternative modeling approach isto use diffusion models. However, these have mainly been used as speech vocoders(i.e., conditioned on mel-spectrograms) or generating relatively low samplingrate signals. In this work, we propose a high-fidelity multi-band diffusion-basedframework that generates any type of audio modality (e.g., speech, music, environmentalsounds) from low-bitrate discrete representations. At equal bit rate,the proposed approach outperforms state-of-the-art generative techniques in termsof perceptual quality. Training and evaluation code are available on the facebookresearch/audiocraft github project. Samples are available on the followinglink (https://ai.honu.io/papers/mbd/).