Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track
Yair Carmon, Danielle Hausler
We develop and analyze algorithms for distributionally robust optimization (DRO) of convex losses. In particular, we consider group-structured and bounded $f$-divergence uncertainty sets. Our approach relies on an accelerated method that queries a ball optimization oracle, i.e., a subroutine that minimizes the objective within a small ball around the query point. Our main contribution is efficient implementations of this oracle for DRO objectives. For DRO with $N$ non-smooth loss functions, the resulting algorithms find an $\epsilon$-accurate solution with $\widetilde{O}\left(N\epsilon^{-2/3} + \epsilon^{-2}\right)$ first-order oracle queries to individual loss functions. Compared to existing algorithms for this problem, we improve complexity by a factor of up to $\epsilon^{-4/3}$.