Neural Approximation of Graph Topological Features

Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track

Bibtex Paper Supplemental

Authors

Zuoyu Yan, Tengfei Ma, Liangcai Gao, Zhi Tang, Yusu Wang, Chao Chen

Abstract

Topological features based on persistent homology capture high-order structural information so as to augment graph neural network methods. However, computing extended persistent homology summaries remains slow for large and dense graphs and can be a serious bottleneck for the learning pipeline. Inspired by recent success in neural algorithmic reasoning, we propose a novel graph neural network to estimate extended persistence diagrams (EPDs) on graphs efficiently. Our model is built on algorithmic insights, and benefits from better supervision and closer alignment with the EPD computation algorithm. We validate our method with convincing empirical results on approximating EPDs and downstream graph representation learning tasks. Our method is also efficient; on large and dense graphs, we accelerate the computation by nearly 100 times.