Social-Inverse: Inverse Decision-making of Social Contagion Management with Task Migrations

Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track

Bibtex Paper Supplemental

Authors

Guangmo Tong

Abstract

Considering two decision-making tasks $A$ and $B$, each of which wishes to compute an effective decision $Y$ for a given query $X$, can we solve task $B$ by using query-decision pairs $(X, Y)$ of $A$ without knowing the latent decision-making model? Such problems, called inverse decision-making with task migrations, are of interest in that the complex and stochastic nature of real-world applications often prevents the agent from completely knowing the underlying system. In this paper, we introduce such a new problem with formal formulations and present a generic framework for addressing decision-making tasks in social contagion management. On the theory side, we present a generalization analysis for justifying the learning performance of our framework. In empirical studies, we perform a sanity check and compare the presented method with other possible learning-based and graph-based methods. We have acquired promising experimental results, confirming for the first time that it is possible to solve one decision-making task by using the solutions associated with another one.