In Differential Privacy, There is Truth: on Vote-Histogram Leakage in Ensemble Private Learning

Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track

Bibtex Paper Supplemental

Authors

JIAQI WANG, Roei Schuster, I Shumailov, David Lie, Nicolas Papernot

Abstract

When learning from sensitive data, care must be taken to ensure that training algorithms address privacy concerns. The canonical Private Aggregation of Teacher Ensembles, or PATE, computes output labels by aggregating the predictions of a (possibly distributed) collection of teacher models via a voting mechanism. The mechanism adds noise to attain a differential privacy guarantee with respect to the teachers' training data. In this work, we observe that this use of noise, which makes PATE predictions stochastic, enables new forms of leakage of sensitive information. For a given input, our adversary exploits this stochasticity to extract high-fidelity histograms of the votes submitted by the underlying teachers. From these histograms, the adversary can learn sensitive attributes of the input such as race, gender, or age. Although this attack does not directly violate the differential privacy guarantee, it clearly violates privacy norms and expectations, and would not be possible $\textit{at all}$ without the noise inserted to obtain differential privacy. In fact, counter-intuitively, the attack $\textbf{becomes easier as we add more noise}$ to provide stronger differential privacy. We hope this encourages future work to consider privacy holistically rather than treat differential privacy as a panacea.