Monte Carlo Tree Search based Variable Selection for High Dimensional Bayesian Optimization

Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track

Bibtex Paper Supplemental

Authors

Lei Song, Ke Xue, Xiaobin Huang, Chao Qian

Abstract

Bayesian optimization (BO) is a class of popular methods for expensive black-box optimization, and has been widely applied to many scenarios. However, BO suffers from the curse of dimensionality, and scaling it to high-dimensional problems is still a challenge. In this paper, we propose a variable selection method MCTS-VS based on Monte Carlo tree search (MCTS), to iteratively select and optimize a subset of variables. That is, MCTS-VS constructs a low-dimensional subspace via MCTS and optimizes in the subspace with any BO algorithm. We give a theoretical analysis of the general variable selection method to reveal how it can work. Experiments on high-dimensional synthetic functions and real-world problems (e.g., MuJoCo locomotion tasks) show that MCTS-VS equipped with a proper BO optimizer can achieve state-of-the-art performance.