Non-rigid Point Cloud Registration with Neural Deformation Pyramid

Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track

Bibtex Paper Supplemental

Authors

YANG LI, Tatsuya Harada

Abstract

Non-rigid point cloud registration is a key component in many computer vision and computer graphics applications. The high complexity of the unknown non-rigid motion make this task a challenging problem. In this paper, we break down this problem via hierarchical motion decomposition. Our method called Neural Deformation Pyramid (NDP) represents non-rigid motion using a pyramid architecture. Each pyramid level, denoted by a Multi-Layer Perception (MLP), takes as input a sinusoidally encoded 3D point and outputs its motion increments from the previous level. The sinusoidal function starts with a low input frequency and gradually increases when the pyramid level goes down. This allows a multi-level rigid to nonrigid motion decomposition and also speeds up the solving by ×50 times compared to the existing MLP-based approach. Our method achieves advanced partial-to-partial non-rigid point cloud registration results on the 4DMatch/4DLoMatchbenchmark under both no-learned and supervised settings.