Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track
Lingxiao Huang, Yuyi Wang, Chunxue Yang, Huanjian Zhou
The problem of monotone submodular maximization has been studied extensively due to its wide range of applications. However, there are cases where one can only access the objective function in a distorted or noisy form because of the uncertain nature or the errors involved in the evaluation. This paper considers the problem of constrained monotone submodular maximization with noisy oracles introduced by Hassidim and Singer (2017). For a cardinality constraint, we propose an algorithm achieving a near-optimal (1-1/e-O(epsilon))-approximation guarantee (for arbitrary epsilon > 0) with only a polynomial number of queries to the noisy value oracle, which improves the exponential query complexity of Singer and Hassidim (2018). For general matroid constraints, we show the first constant approximation algorithm in the presence of noise. Our main approaches are to design a novel local search framework that can handle the effect of noise and to construct certain smoothing surrogate functions for noise reduction.