APG: Adaptive Parameter Generation Network for Click-Through Rate Prediction

Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track

Bibtex Paper Supplemental


Bencheng Yan, Pengjie Wang, Kai Zhang, Feng Li, Hongbo Deng, Jian Xu, Bo Zheng


In many web applications, deep learning-based CTR prediction models (deep CTR models for short) are widely adopted. Traditional deep CTR models learn patterns in a static manner, i.e., the network parameters are the same across all the instances. However, such a manner can hardly characterize each of the instances which may have different underlying distributions. It actually limits the representation power of deep CTR models, leading to sub-optimal results. In this paper, we propose an efficient, effective, and universal module, named as Adaptive Parameter Generation network (APG), which can dynamically generate parameters for deep CTR models on-the-fly based on different instances. Extensive experimental evaluation results show that APG can be applied to a variety of deep CTR models and significantly improve their performance. Meanwhile, APG can reduce the time cost by 38.7\% and memory usage by 96.6\% compared to a regular deep CTR model.We have deployed APG in the industrial sponsored search system and achieved 3\% CTR gain and 1\% RPM gain respectively.