HAPI: A Large-scale Longitudinal Dataset of Commercial ML API Predictions

Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Datasets and Benchmarks Track

Bibtex Paper Supplemental

Authors

Lingjiao Chen, Zhihua Jin, Evan Sabri Eyuboglu, Christopher Ré, Matei Zaharia, James Y. Zou

Abstract

Commercial ML APIs offered by providers such as Google, Amazon and Microsoft have dramatically simplified ML adoptions in many applications. Numerous companies and academics pay to use ML APIs for tasks such as object detection, OCR and sentiment analysis. Different ML APIs tackling the same task can have very heterogeneous performances. Moreover, the ML models underlying the APIs also evolve over time. As ML APIs rapidly become a valuable marketplace and an integral part of analytics, it is critical to systematically study and compare different APIs with each other and to characterize how individual APIs change over time. However, this practically important topic is currently underexplored due to the lack of data. In this paper, we present HAPI (History of APIs), a longitudinal dataset of 1,761,417 instances of commercial ML API applications (involving APIs from Amazon, Google, IBM, Microsoft and other providers) across diverse tasks including image tagging, speech recognition, and text mining from 2020 to 2022. Each instance consists of a query input for an API (e.g., an image or text) along with the API’s output prediction/annotation and confidence scores. HAPI is the first large-scale dataset of ML API usages and is a unique resource for studying ML as-a-service (MLaaS). As examples of the types of analyses that HAPI enables, we show that ML APIs’ performance changes substantially over time—several APIs’ accuracies dropped on specific benchmark datasets. Even when the API’s aggregate performance stays steady, its error modes can shift across different subtypes of data between 2020 and 2022. Such changes can substantially impact the entire analytics pipelines that use some ML API as a component. We further use HAPI to study commercial APIs’ performance disparities across demographic subgroups over time. HAPI can stimulate more research in the growing field of MLaaS.