List-Decodable Sparse Mean Estimation

Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track

Bibtex Paper Supplemental


Shiwei Zeng, Jie Shen


Robust mean estimation is one of the most important problems in statistics: given a set of samples in $\mathbb{R}^d$ where an $\alpha$ fraction are drawn from some distribution $D$ and the rest are adversarially corrupted, we aim to estimate the mean of $D$. A surge of recent research interest has been focusing on the list-decodable setting where $\alpha \in (0, \frac12]$, and the goal is to output a finite number of estimates among which at least one approximates the target mean. In this paper, we consider that the underlying distribution $D$ is Gaussian with $k$-sparse mean. Our main contribution is the first polynomial-time algorithm that enjoys sample complexity $O\big(\mathrm{poly}(k, \log d)\big)$, i.e. poly-logarithmic in the dimension. One of our core algorithmic ingredients is using low-degree {\em sparse polynomials} to filter outliers, which may find more applications.