Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track
Siyu Long, Yi Zhou, Xinyu Dai, Hao Zhou
Drug design is a crucial step in the drug discovery cycle. Recently, various deep learning-based methods design drugs by generating novel molecules from scratch, avoiding traversing large-scale drug libraries. However, they depend on scarce experimental data or time-consuming docking simulation, leading to overfitting issues with limited training data and slow generation speed. In this study, we propose the zero-shot drug design method DESERT (Drug dEsign by SkEtching and geneRaTing). Specifically, DESERT splits the design process into two stages: sketching and generating, and bridges them with the molecular shape. The two-stage fashion enables our method to utilize the large-scale molecular database to reduce the need for experimental data and docking simulation. Experiments show that DESERT achieves a new state-of-the-art at a fast speed.