Towards Understanding the Mixture-of-Experts Layer in Deep Learning

Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track

Bibtex Paper Supplemental


Zixiang Chen, Yihe Deng, Yue Wu, Quanquan Gu, Yuanzhi Li


The Mixture-of-Experts (MoE) layer, a sparsely-activated model controlled by a router, has achieved great success in deep learning. However, the understanding of such architecture remains elusive. In this paper, we formally study how the MoE layer improves the performance of neural network learning and why the mixture model will not collapse into a single model. Our empirical results suggest that the cluster structure of the underlying problem and the non-linearity of the expert are pivotal to the success of MoE. This motivates us to consider a challenging classification problem with intrinsic cluster structures. Theoretically, we proved that this problem is hard to solve by a single expert such as a two-layer convolutional neural network (CNN). Yet with the MoE layer with each expert being a two-layer CNN, the problem can be solved successfully. In particular, our theory shows that the router can learn the cluster-center features, which helps divide the input complex problem into simpler classification sub-problems that individual experts can conquer. To our knowledge, this is the first theoretical result toward formally understanding the mechanism of the MoE layer for deep learning.